1 / 20

Telecommunication Networks Distributed P arameter Networks

Telecommunication Networks Distributed P arameter Networks. Distributed Parameter Networks 1. d. EM waves t heory , but if d<< , we can examine t he topic with quasi-stationary method. Lecher wire. koaxial cable. The electromagnetic wave passes on the wire.

kalani
Télécharger la présentation

Telecommunication Networks Distributed P arameter Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TelecommunicationNetworks DistributedParameterNetworks

  2. DistributedParameterNetworks 1. d EM wavestheory, butifd<<, wecanexaminethetopicwithquasi-stationarymethod. Lecherwire koaxialcable The electromagneticwavepassesonthewire. The electric and magneticpowerdistributehomogeneouslyalongthewire, butthecurrentchangesintime. Consumer Generator

  3. DistributedParameterNetworks 2. Inductionlawfor ABCD loop: Loopequationfordx : The flux is proportionaltothecurrent: =Ldxi

  4. DistributedParameterNetworks 3. Ondxsectioncharchesaccumulate, oraccumulatedchargesdisappear. Thisincreasesthedifferencebetween input and output current. Ondxthechange of chargesintime: Continuityequation : where u(x,t)Gdx is theleakagecurrent is thedisplacementcurrenteltolási betweenthetwowires Rearranging:

  5. DistributedParameterNetworks 4. The equvalentcircuit of dxonpowertransmission line: Twoequationsonpure sine signal:

  6. DistributedParameterNetworks 5. Telegram equations The 2. equationdifferentiatedby x and weput du/dxfrom 1. equationinto 2. equationweget:

  7. DistributedParameterNetworks 6. Wetrytoget a formula likethis: substituting back : – propagationcoefficient Considering a pozitive , weget: Attenuationfactor Phasefactor

  8. DistributedParameterNetworks 7. If a is considered Thismeans a wavepassingtowardnegativexdirectiononratev The length of periodis: Formula forwavelength and phasefactor Wavepassingonpositive x is:

  9. DistributedParameterNetworks 8. The timedependence of thevoltagemeasuredin a givenpositiononthewire is puresinusoidal. Atdxdistancetheamplitudedecreases and thephasechanges. Substitutingvoltagewaveinto equation, weget:

  10. DistributedParameterNetworks 9. Fromthepreviouspicturewesupposethatthecurrent formula is: Thus: Waveimpedance

  11. DistributedParameterNetworks 10. Substitutingthenegativedirectionwaveweget: The generalsolution of thevoltagewave is: The generalsolution of thecurrentwave is: or:

  12. DistributedParameterNetworks 11. Idealwire: thus Phasefactor rate és Thomson formula: where [L]=Henry and [C]=Farad Ifwedecreasethevalue of L and C towards 0, v doesnotreach c (speed of light). Onidlewirethewavespassby c rate.

  13. DistributedParameterNetworks 12. Twowires Capacity Induction Waveresistance Ifweincreasecapacitieswithgeometricalsizestheinductivitydecreases and vice versa. Thusit is impossibletomake a constructionwhichcanoperateonhigherratethan c.

  14. DistributedParameterNetworks 13. Foridlewire: Inidlecasetherate and waveimpedancedonotdependonfrequency. Ifratewoulddependonfrequency, distortionwouldoccureforexampleonpulsesignal, becausethespectra is: 0, 30, 50, … etc. and wewouldgetdifferentphasedelaysondifferentfrequencies. Onthecableswithbigattenuationthebigdelaytimecausesbigproblems: 

  15. DistributedParameterNetworks 14. Weexaminethetransmission line with Z atthe end: Let’ssay: U0+ =A and U0- =B and x=-l. Wedonotconsiderthetimedependencecase, thus: Ir Ih Ur Uh

  16. DistributedParameterNetworks 15. Let’scountthevalue of A and B with UZ and IZ: If =0, itmeansU=UZand I =IZ Adding and substracting:

  17. DistributedParameterNetworks 16. Voltagereflectionfactor: Reflectionfactorat Z Currentreflectionfactor is:

  18. DistributedParameterNetworks 17. A and B arecomplexnumbers: thus: The direct and reflectedwavesoncomplexplain:

  19. DistributedParameterNetworks 18. Wherethetwovectorsareinphase voltage-maximum Wherethephasedifference is 180ovoltage-minimum IfZZ0 alongthe line standing wavesareselfcreated IfZ=Z0, therearenot standing waves

  20. DistributedParameterNetworks 19. Voltage standing wave: or: Fromthefigure: • Distancebetweentwo minimum or maximum values is /2 • Distancebetween maximum and minimum values is /4

More Related