410 likes | 436 Vues
Learn about Superposition, Source Transformation, Thevenin and Norton Theorems, and Maximum Power Principle in this chapter of Electrical Engineering.
E N D
وزارةالتعليم العالي والبحث العلمي الجامعة المستنصرية كلية الهندسة قسم هندسة الحاسوب Ministry of Higher Education and Scientific Research Al-MustansiriyahUniversity Faculty ofEngineering Computer EngineeringDepartment Electrical Eng. Lab 1' class Assistant Lecturer Hazimalkargole 2017 20189
Chapter(4) • Additional AnalysisTechniques • Here we will study four additionalTechniques • Superposition • Sourcetransformation • Thevenin and NortonTheorems • Maximum powerprinciple • 1. Superposition: • Definition: • Whenever a linear circuit is excited by more than one independent source, the total response is the algebraic sum of individualresponses • The idea is to activate one independent source at a timeto get individualresponse. • Then add the individual response to get totalresponse
Note: Dependent source are Neverdeactivated (alwaysactive) When an independent voltage source is deactivated, it is set to zero. replaced by shortcircuit When an independent current source is deactivated, it is set to zero. replaced by opencircuit Example: Use superposition tofind 6Ω i1,i2,i3,i4? 2Ω i3 i1 120V 3Ω 4Ω 12A i2 +- i4
•Activate independent voltage source 120 Vonly 2Ω V 6Ω 1 'i3 'i1 open circuit for currentsource 120V 3Ω 4Ω 'i2 +- 'i4 •Using KCL at V1 (nodalanalysis) 'i1'i2'i30
120V1V1V1 0 6 3 2 4 20V 1110 6 1 6 3 V1 30V 120V 90 'i 15A 1 1 6 10A 6 V 30 'i 1 2 3 3 1 V 'i i 5 A 3 4 6
* Activate the independent current sourceonly V4 V3 6Ω 2Ω ''i1 ''i3 short circuit for voltagesource 12A 3Ω 4Ω ''i2 ''i4 KCL at V3: "i1"i2"i30 V3 V3 V3 V4 0 6 3 2 V32V33(V3V)0 -6V33V40KK(1)
KCL atV4: "i3"i4120 V3 V4 V4 120 2 4 2 V3 2 V4 V4 48 2 V3 3 V4 48 KK(2) V312V V4 24 V
V 12 2A "i 3 1 6 6 V 12 4 A "i 3 2 3 3 V3 V4 1224 6A "i 3 2 2 6 A V 24 "i 4 4 4 4 i1'i1"i115217A i2'i2"i21046A i3'i3"i35611A i4'i4"i456-1A
Example: 0.4VΦ 5Ω + iΦ + 10V 10Ω V 20Ω 5A Φ V +- o - - 2iΦ Use super positionto findV ? 0 Activate voltage sourceonly: 0.4'V Φ 5Ω X + 'iΦ + 10V 10Ω 'V 20Ω Φ 'V +- o - - 2'iΦ
'VΦ10(0.4'VΦ)4'VΦ 'VΦ4'VΦ 'VΦ0 Dependent current source isopen 5Ω 'V 1020 25 + 10V 0 +- 20Ω 'V o 'V 8V 0 -
Activate independent current sourceonly: 0.4''VΦ 5Ω Z y + ''iΦ 5A + ''VΦ - 10Ω 20Ω ''V o - 2''iΦ KCL atnode -"V0 "V0 5 20 (y): 0.4"V 0 Φ -4"V0"V08"VΦ0 -5"V08"VΦ0KK(1)
5"VΦ 0.4"V 0 Φ 10 0.5"VΦ5 "VΦ 10V "V 8"V -8016V 0 Φ 5 5 V0'V0"V0816-8V
Example: Use superposition to find V ? 4A 5 2 100V + V - +- 12 10 Consider the independent sourceonly
5 2 X i3 10 100Vi1 + 'V - +- 12 i2 Apply KCL at node (x): i1i2i30 100'V'V'V0 5 10 14 22'V'V'V0 5 10 14 ' V 1 1 1 22 'V59.23V 5 10 14
Consider the independent sourceonly. 4A 4A 5 2 5 2 + ''V - 12 10 10 - + ''V 12
4A 10 3 ix 2 - + ''V Currentdivider iy 12 12 ix4A 2.769A 10 3 12 2 "Vi 109.23V x 3 V'V"V59.239.2350V
2.SourceTransformation: A transformation that allow a voltage source inseries with a resistor to be replaced by a current source in parallel with the same resistor or viceversa a How? IL IL a R + VL - + VLRL - IS +- V s b KCT1 We need tofind bothcircuits b KCT2 Is and Vs such that VL and IL is the samein
In KCT 1, Vs I L R R L In KCT2, R I I L s R R L For IL to be the same , weneed Vs RIs
a a R +- IS R VS b b Where V or I s V RI s s s R
Example: Using source transformation, find the power associated withthe 6 Vsource. 4Ω 6Ω 5Ω 40V +- 6V +- 30Ω 20Ω 10Ω 1. Consider the 40 V source in series with(5 4Ω 6Ω 40 8A 5 6V +- 30Ω 20Ω 5Ω 10Ω
2. Take 5 6Ω 4Ω 8A 6V 5 //20 4Ω +- 30Ω 10Ω 3. Consider 8A in parallel with(4 4Ω 6Ω 4A (8A)(4)= 32V 6V +- +- 30Ω 10Ω
4. Take (4+6+10) inseries 4Ω 20 6V 32V +- +- 30Ω 5 Consider 32 V in series with(20 4Ω 32 1.6A 20 6V +- 20Ω 30Ω
6. Take (30//20 4Ω 1.6A 30 //20 12Ω 6V +- 7Consider 1.6A in parallel with (15 4Ω 12 i 1.6 A(12) =19.2V 6V +- +-
i19.260.825A P vi6(0.825) 6V 412 P6v 4.95 W(absorbing) Example: Use source transformation to findV0 25Ω 5Ω 250V + Vo - 8A +- 100Ω 15Ω
Take (5//15)//100 = 6.66 25Ω 250V + Vo - 8A +- 16.66Ω 2. Consider (250 V) in series with (25 250 10A 25 + Vo - 8A 16.66Ω 25Ω
3. Findequivalent + Vo - i1082A R16.66//25 10Ω V0iR(2A)(10Ω)20V
Example: Use source transformation to findV0 1.6Ω 60V 20Ω +- + 36A Vo - 8Ω 120V 6Ω 5Ω +- 1.6Ω 120 6A 60 12A + 36A 5 20 8Ω V 20Ω o 6Ω 5Ω -
1.6Ω i1 i2 20 // 5 //6 2.4Ω R2 i = 36 + 6 -12 = 30A + Vo - 8Ω R3 R 1 R1 2.4 i i (30) 6A 2 R R R 2.41.68 1 2 3 V0i2R36A8Ω48V
Example : Use source transformation to findV0? 1ohm 1ohm 1ohm + Vs 10V + 2A 1ohm 1ohm - Vo -- Consider (10V) in series with (11ohm 1ohm + 1 ohmVo 10A 2A 1ohm 1ohm --
Take(1//1)=0.5 1ohm 1ohm + Vo 2A 1/2ohm 10A 1ohm -- Consider (10A) in parallel with (0.5 1/2 ohm 1ohm 1ohm + + Vo 2A 5V 1ohm - --
Take 0.5Ω in series with 1Ω 1.5ohm 1ohm + + 5V - 2A Vo 1ohm -- Consider 5V in series with 1.5 1ohm + Vo 2A 1.5ohm 10/3A 1ohm --
1ohm Add the currentsources + 4/3A Vo 1.5ohm 1ohm -- 7. Take (4/3A) in parallel with (3/2 1.5ohm 1ohm + + Vo 2V 1ohm 1 - V0111.5 2 4/7V --
Thevenin and NortonTheorems TheveninTheorem: A portion of the circuit at a pair of nodes can be replaced by a voltage source Voc in series with a resistor RTH, where Voc is the open circuit voltage and RTH is the Thevenin’s equivalent resistance obtained by considering the open circuit with all independent sources madezero a RTH a circuit VOC RL +- RL b b
Norton Theorem: A portion of the circuit at pair of nodes can be replaced by a current source Isc in a parallel with aresistor RTH. Isc is the short circuit current at the terminals, and RTH is theThevenin’s equivalentresistance a a ISC circuit RL RL RTH b Here we will consider ( 3 ) cases: b Circuit containing only independentsources. Circuit containing only dependentsources. Circuit containing both independent and dependentsources.
Case (1): Circuit containing only independentsources: • Procedure of Thevenin’sTheorm: • Find the open circuit voltage at the terminals ,Voc. • Find the Thevenin’s equivalent resistance, RTH at the terminals when all independent sources arezero: • Replacing independent voltage sources by shortcircuit • Replacing independent current sources by opencircuit • Reconnect the load to the Thevenin equivalentcircuit • Procedure of Norton’sTheorm: • Find the short circuit current attheterminals, Isc. • Find Thevenin’s equivalent resistance, RTH (asbefore). • Reconnect the load to Norton’s equivalentcircuit.
RTH VOC ISC +- RL RL RTH Example: Use Thevenin’s and Norton Theorms to findV0 +- - + + Vo - 6V 12V 2kΩ 2kΩ 4kΩ Using TheveninTheorm:
First findVOC: +- - + 6V 12V + Voc - V i (4k)4V + 4kΩ - i1 2kΩ 6V i 1 mA 1 4kΩ 1 2k4k Voc12V4V8V
Second, findRTH RTH 2kΩ 4kΩ RTH = 2k//4k = 4/3 k Thevenin equivalent circuitis RTH 2 kΩ V V 0 oc 2kR TH + Vo - VOC 2k 8V +- 2 kΩ 10 k 3 V0 4.8V
+- Using NortonTheorm First findIsc - + 6V 12V ISC 2kΩ 4kΩ X +- i1 4kΩ i 6V + V2k - - +- 12V + 2kΩ i2 12V
i 12V3m A 1 4k KVL around outerloop: 126V2k0 V2k 6V V2k 63mA i 2 2k 2k KCL at x: i1i2i0 3m3mi0 i6m A Isc 6 mA
RTH is the same asbefore: Io RTH + Vo - ISC 2k 4 k 3 R (6m)2.4mA ) I TH (I 0 sc 4 R 2k k2k 3 TH V0I0(2k)(2.4m)(2k)4.8V