1 / 35

Segmentation

Segmentation. Memory-management scheme that supports user view of memory. A program is a collection of segments. A segment is a logical unit such as: main program, procedure, function, method, object, local variables, global variables, common block, stack,

kasa
Télécharger la présentation

Segmentation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Segmentation • Memory-management scheme that supports user view of memory. • A program is a collection of segments. A segment is a logical unit such as: main program, procedure, function, method, object, local variables, global variables, common block, stack, symbol table, arrays Operating System Concepts

  2. Logical View of Segmentation 1 4 2 3 1 2 3 4 user space physical memory space Operating System Concepts

  3. Segment Tables • Load segments separately into memory • Each process has a segment table in memory that maps segment-numbers (table index) to physical addresses. • Each entry has: • base – contains the starting physical address where the segments reside in memory. • limit – specifies the length of the segment. Operating System Concepts

  4. Segment Table Example Operating System Concepts

  5. Logical addresses are a segment number and an offset within the segment Segmentation Addressing Operating System Concepts

  6. Segmentation Registers • Each process has a segment-table base register (STBR) and a segment-table length register (STLR) that are loaded into the MMU. • STBR points to the segment table’s location in memory • STLR indicates number of segments used by a program • Segment number s is legal if s < STLR Operating System Concepts

  7. Considerations • Since segments vary in length, memory allocation is a dynamic storage-allocation problem. • Allocation. • first fit/best fit • external fragmentation • (Back to the old problems :-) • Sharing. • shared segments • same segment number Operating System Concepts

  8. Memory Protection • Protection. With each entry in segment table associate: • validation bit = 0  illegal segment • read/write/execute privileges • Protection bits associated with segments; code sharing occurs at segment level. Operating System Concepts

  9. Dynamic Linking • Linking postponed until execution time. • Small piece of code, stub, used to locate the appropriate memory-resident library routine. • Stub replaces itself with the address of the routine, and executes the routine. • Dynamic linking is particularly useful for libraries, which may be loaded in advance, or on demand • Also known as shared libraries • Permits update of system libraries without relinking • I NEED TO LEARN MORE ABOUT THIS Operating System Concepts

  10. Dynamic Loading • Routine is not loaded until it is called • When loaded, address tables in the resident portion are updated • Better memory-space utilization; unused routine is never loaded. • Useful when large amounts of code are needed to handle infrequently occurring cases. Operating System Concepts

  11. Paging • Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes). • Divide logical memory into blocks of same size called pages. • Keep track of all free frames. • To run a program of size n pages, need to find n free frames and load program (for now, assume all pages are loaded). Operating System Concepts

  12. Logical View of Paging Operating System Concepts

  13. Page Tables • Each process has a page table in memory that maps page numbers (table index) to physical addresses. Operating System Concepts

  14. Paging Addressing • Logical addresses are a page number and an offset within the segment Operating System Concepts

  15. Page Table Example Operating System Concepts

  16. Paging Registers • Each process has a page-tablebase register (PTBR) and a page-table length register (PTLR) that are loaded into the MMU • PTBR points to the page table in memory. • PTLR indicates number of page table entries Operating System Concepts

  17. Free Frames Before allocation After allocation Operating System Concepts

  18. Real Paging Examples • Example from Geoff’s notes x 2 • Multiply offsets by page table width = address width • WORK OUT DETAILS Operating System Concepts

  19. Memory Protection • Can access only inside frames anyway • PTLR protects against accessing non-existent, or not-in-use, parts of a page table. • An alternative is to attach a valid-invalid bit to each entry in the page table: • “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal page. • “invalid” indicates that the page is not in the process’ logical address space. • Finer grained protection is achieved using rwx bits for each page Operating System Concepts

  20. Valid (v) or Invalid (i) Bit In A Page Table Operating System Concepts

  21. Relocation and Swapping • Relocation requires update of page table • Swapping is an extension of this Operating System Concepts

  22. TLBs • In simple paging every data/instruction access requires two memory accesses. One for the page table and one for the data/instruction. • The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers(TLBs) • Associative memory – parallel search Address translation (A´, A´´) • If A´ is in associative register, get frame # out. • Otherwise get frame # from page table in memory • Fast cache is an alternative Page # Frame # Operating System Concepts

  23. Paging Hardware With TLB Operating System Concepts

  24. TLB Performance • Effective access time • Assume memory cycle time is X time unit • Associative lookup =  time unit • Hit ratio  – percentage of times that a page number is found in the associative registers • Effective Access Time (EAT) EAT = (X + )  + (2X + )(1 – ) = 2X +  – X • OK if  is small and  is large, e.g., 0.2 and 95% • TLB Reach • The amount of memory accessible from the TLB. • TLB Reach = (TLB Size) X (Page Size) • Ideally, the working set of each process is stored in the TLB • Examples • 68030 - 22 entry TLB • 80486 - 32 register TLB, claims 98% hit rate Operating System Concepts

  25. Considerations • Fragmentation vs Page table size and TLB hits • Page size selection • internal fragmentation => smaller pages • table size => larger pages (32 bit address = 4GB, 4KB frames => 220 entries @ 4 bytes = 4MB table!) • i386 - 4K pages • 68030 - up to 32K pages • Newer hardware tending to larger page sizes - to 16MB • Multiple Page Sizes. This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation. • UltraSparc supports 8K, 64K, 512K, and 4M • Requires OS support Operating System Concepts

  26. Two-Level Paging Example • A logical address (on 32-bit machine (4GB addresses) with 4K page size (12 bit offsets)) is divided into: • a page number consisting of 20 bits. • a page offset consisting of 12 bits. • 220 pages, 4 bytes per entry => 4MB page table • The page table is paged, the page number is further divided into: • a 10-bit page number. • a 10-bit page offset. • Thus, a logical address is as follows:where pi is an index into the outer page table, and p2 is the displacement within the page of the outer page table. page number page offset p2 pi d 10 12 10 Operating System Concepts

  27. Address-Translation Scheme • Address-translation scheme for a two-level paging architecture • p1 and p2 may be found in a TLB • Example from Geoff’s notes • Examples • SPARC - 3 level hierarchy (32 bit) • 68030 - 4 level hierarchy (32 bit) • Multiple memory accesses, up to 7 for 64 bit addressing Operating System Concepts

  28. Hashed Page Tables • Common in address spaces > 32 bits. • The page number is hashed into a page table. This page table contains a chain of elements hashing to the same location. • Page numbers are compared in this chain • More efficient than multi-level for small processes Operating System Concepts

  29. Inverted Page Table • For very large virtual address spaces (see VM) • One entry for each frame of memory. • Entry consists of the virtual address of the page stored in that real memory location, with information about the process that owns that page, e.g., PID. • Virtual address may be duplicated, but PIDs are unique • Decreases memory needed to store each page table, but increases time needed to search the table when a page reference occurs. • Use hash table to limit the search to one — or at most a few — page-table entries. • Used by IBM RT and PowerPC Operating System Concepts

  30. Inverted Page Table Architecture Operating System Concepts

  31. Shared Pages • Shared code • One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems). • Shared code must appear in same location in the logical address space of all processes. • Private code and data • Each process keeps a separate copy of the code and data. • The pages for the private code and data can appear anywhere in the logical address space. Operating System Concepts

  32. Shared Pages Example Operating System Concepts

  33. Segmentation with Paging – MULTICS • The MULTICS system solved problems of external fragmentation and lengthy search times by paging the segments. • Solution differs from pure segmentation in that the segment-table entry contains not the base address of the segment, but rather the base address of a page table for this segment. Operating System Concepts

  34. MULTICS Address Translation Scheme Operating System Concepts

  35. Intel 30386 Address Translation Operating System Concepts

More Related