1 / 19

AP Biology

AP Biology. Lab Review. Lab 4: Photosynthesis. Lab 4: Photosynthesis. Description determine rate of photosynthesis under different conditions light vs. dark boiled vs. unboiled chloroplasts chloroplasts vs. no chloroplasts use DPIP in place of NADP + DPIP ox = blue DPIP red = clear

katina
Télécharger la présentation

AP Biology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AP Biology Lab Review

  2. Lab 4: Photosynthesis

  3. Lab 4: Photosynthesis • Description • determine rate of photosynthesis under different conditions • light vs. dark • boiled vs. unboiled chloroplasts • chloroplasts vs. no chloroplasts • use DPIP in place of NADP+ • DPIPox = blue • DPIPred = clear • measure light transmittance • paper chromatography to separate plant pigments

  4. Lab 4: Photosynthesis • Concepts • photosynthesis • Photosystem 1 • NADPH • chlorophylls & other plant pigments • chlorophyll a • chlorophyll b • xanthophylls • carotenoids • experimental design • control vs. experimental

  5. Lab 4: Photosynthesis • Conclusions • Pigments • pigments move at different rates based on solubility in solvent • Photosynthesis • light & unboiled chloroplasts produced highest rate of photosynthesis

  6. Lab 4: Photosynthesis ESSAY 2004 (part 1) A controlled experiment was conducted to analyze the effects of darkness and boiling on the photosynthetic rate of incubated chloroplast suspensions. The dye reduction technique was used. Each chloroplast suspension was mixed with DPIP, an electron acceptor that changes from blue to clear when it is reduced. Each sample was placed individually in a spectrophotometer and the percent transmittance was recorded. The three samples used were prepared as follows. Sample 1 — chloroplast suspension + DPIP Sample 2 — chloroplast suspension surrounded by foil wrap to provide a dark environment + DPIP Sample 3 — chloroplast suspension that has been boiled + DPIP Data are given in the table on the next page. a. Construct and label a graph showing the results for the three samples. b. Identify and explain the control or controls for this experiment. c. The differences in the curves of the graphed data indicate that there were differences in the number of electrons produced in the three samples during the experiment. Discuss how electrons are generated in photosynthesis and why the three samples gave different transmittance results.

  7. Lab 4: Photosynthesis ESSAY 2004 (part 2)

  8. Lab 5: Cellular Respiration

  9. Lab 5: Cellular Respiration • Description • using respirometer to measure rate of O2 production by pea seeds • non-germinating peas • germinating peas • effect of temperature • control for changes in pressure & temperature in room

  10. Lab 5: Cellular Respiration • Concepts • respiration • experimental design • control vs. experimental • function of KOH • function of vial with only glass beads

  11. Lab 5: Cellular Respiration • Conclusions • temp = respiration • germination = respiration calculate rate?

  12. Lab 5: Cellular Respiration ESSAY 1990 The results below are measurements of cumulative oxygen consumption by germinating and dry seeds. Gas volume measurements were corrected for changes in temperature and pressure. a. Plot the results for the germinating seeds at 22°C and 10°C. b. Calculate the rate of oxygen consumption for the germinating seeds at 22°C, using the time interval between 10 and 20 minutes. c. Account for the differences in oxygen consumption observed between: 1. germinating seeds at 22°C and at 10°C 2. germinating seeds and dry seeds. d. Describe the essential features of an experimental apparatus that could be used to measure oxygen consumption by a small organism. Explain why each of these features is necessary.

  13. Lab 6: Molecular Biology

  14. Lab 6: Molecular Biology • Description • Transformation • insert foreign gene (GFP) in bacteria by using engineered plasmid • also insert ampicillin resistant gene on same plasmid as selectable marker • Gel electrophoresis • cut DNA with restriction enzyme • fragments separate on gel based on size

  15. Lab 6: Molecular Biology • Concepts • transformation • plasmid • selectable marker • ampicillin resistance • restriction enzyme • gel electrophoresis • DNA is negatively charged • smaller fragments travel faster

  16. Lab 6: Transformation • Conclusions • can insert foreign DNA using vector • ampicillin becomes selecting agent • no transformation = no growth on amp+ plate

  17. Lab 6: Gel Electrophoresis • Conclusions DNA = negatively charged correlate distance to size smaller fragments travel faster & therefore farther

  18. Lab 6: Molecular Biology ESSAY 1995 The diagram below shows a segment of DNA with a total length of 4,900 base pairs. The arrows indicate reaction sites for two restriction enzymes (enzyme X and enzyme Y). • Explain how the principles of gel electrophoresis allow for the separation of DNA fragments • Describe the results you would expect from electrophoretic separation of fragments from the following treatments of the DNA segment above. Assume that the digestion occurred under appropriate conditions and went to completion. • DNA digested with only enzyme X • DNA digested with only enzyme Y • DNA digested with enzyme X and enzyme Y combined • Undigested DNA • Explain both of the following: • The mechanism of action of restriction enzymes • The different results you would expect if a mutation occurred at the recognition site for enzyme Y.

  19. Lab 6: Molecular Biology ESSAY 2002 The human genome illustrates both continuity and change. • Describe the essential features of two of the procedures/techniques below. For each of the procedures/techniques you describe, explain how its application contributes to understanding genetics. • The use of a bacterial plasmid to clone a human gene • Polymerase chain reaction (PCR) • Restriction fragment polymorphism (RFLP analysis) • All humans are nearly identical genetically in coding sequences and have many proteins that are identical in structure and function. Nevertheless, each human has a unique DNA fingerprint. Explain this apparent contradiction.

More Related