1 / 52

Web Graph & Link Analysis

Web Graph & Link Analysis. http://net.pku.edu.cn/~wbia 黄连恩 hle @net.pku.edu.cn 北京大学信息工程学院 09 / 17 /201 3. Web Graph. http://www.touchgraph.com/TGGoogleBrowser.html. Giant Global Graph. 本次课大纲. Web 图度量 有多大? 连通性如何? 节点的分布如何? 节点距离有多远? Link Analysis Web 上节点重要度如何度量?. Web 有多大?.

kato
Télécharger la présentation

Web Graph & Link Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Web Graph & Link Analysis http://net.pku.edu.cn/~wbia 黄连恩 hle@net.pku.edu.cn 北京大学信息工程学院 09/17/2013

  2. Web Graph http://www.touchgraph.com/TGGoogleBrowser.html

  3. Giant Global Graph

  4. 本次课大纲 Web 图度量 有多大? 连通性如何? 节点的分布如何? 节点距离有多远? Link Analysis Web上节点重要度如何度量?

  5. Web 有多大?

  6. Web的大小—网页总数 图大小不可知,也无法定义 估计Web图节点数的下界 搜索引擎索引的网页数(crawled pages) 例如CNNIC中国互联网网页调查报告 能更逼近真实值吗?

  7. Capture-Recapture Model Unknown number of fish in a lake Catch a sample and mark them Let them loose Recapture a sample and look for marks Estimate population size     n1 = number in first sample 15     n2 = number in second sample 10     n12 = number in both samples 5     N = total population size assume that     n1/N = n12/n2    therefore    15/N = 5/10      N = (10 x 15) / 5 = 30

  8. Web的大小 Estimate indexed web low-bound by analysis overlap of Search Engine (Steve Lawrence and C. Lee Giles,1998*) • P(a) =na/N = n0/nb • N = na*nb/n0 • During the test time, HotBot report indexed 110 miliion page • lower bound on the size of the indexable Web of 320 million pages. (1998)

  9. Overlap Analysis 选择6个流行的 search engine, 假设它们索引页面之间的 independency Sampling: 通过575个查询对这些SE采样,分析它们之间的overlap 用overlap来估计各个SE所覆盖的 indexable Web的大小 利用已知某个SE的页面数,来估计整个Web的大小

  10. Web的连通性如何?

  11. Web的形状 A large scale study (Altavista crawls) reveals interesting properties of web (Andrei Broder ,1999) Study of 200 million nodes & 1.5 billion links Some parts unreachable, Others have long paths found Bow-tie Structure

  12. Bow-tie Components Strongly Connected Component (SCC) Core Upstream (IN) Core can’t reach IN Downstream (OUT) OUT can’t reach core Disconnected Tendrils & Tubes

  13. Component Properties Each component is roughly same size ~50 million nodes Probability of a path between any 2 nodes ~1 quarter (0.24) Diameter, maximal minimal path length(?) Maximal and average diameter is infinite 28 for SCC, 500 for entire graph Average length 16 (directed path exists), 7 (undirected) Shortest directed path between 2 nodes in SCC: 16-20 links on average 问题: 在这样一个巨大的图(200M nodes, 1.5G edges) 上,Diameter怎么计算出来的?

  14. Web上节点的分布如何?

  15. 站点入度分布 会是下面哪一种情况?

  16. Power law

  17. Power law P(x=k)=CK-λ A line appears on a log-log plot rare events are not so rare! Long tail

  18. Power Law Size and Connectivity 站点大小Site Sizes(以页面数量计算)服从 power law 分布 跨越不同的规模 λ在1.6-1.9之间 节点的度connections per node服从power law 分布 Study at Notre Dame University reported λ= 2.45 for outdegree distribution λ= 2.1 for indegree distribution

  19. Power Law Distribution -Examples From Graph structure in the web, (by altavista crawl,1999)

  20. Random Graph .vs. Power Law Graph Random graphs have Poisson distribution if p is small. Random uniform graph with random independent edges of fixed probability p P(x=k)= e-λ * λk/k! Decays exponentially fast to 0 as k increases towards its maximum value n-1 Power law graphs Decays polynomially for large values Power law graph  emerging order in a large graph created by many agents

  21. Examples with Power Law Networks Examples of networks with Power Law Distribution Internet at the router and interdomain level Citation network Collaboration network of actors Networks associated with metabolic pathways Networks formed by interacting genes and proteins Network of nervous system connection in C. elegans

  22. Web上节点距离有多远?

  23. What does this mean? Size: 200M nodes, 1.5G edges Average length: 16 (directed path exists), 7 (undirected) Huge graph with small distance It’s a small world

  24. 小世界网络 It is a ‘small world’ Millions of people. Yet, separated by “six degrees” of acquaintance relationships Popularized by Milgram’s famous experiment Mathematically Diameter of graph is small (log N) as compared to overall size Property seems interesting given ‘sparse’ nature of graph but … This property is ‘natural’ in ‘pure’ random graphs

  25. The small world of WWW Empirical study of Web-graph reveals small-world property Graph generated using power-law model Diameter properties inferred from sampling Calculation of max. diameter computationally demanding for large values of n Average distance (d) in simulated web: d = 0.35 + 2.06 log (n) e.g. n = 109, d ~= 19

  26. Implications for Web Logarithmic scaling of diameter makes future growth of web manageable 10-fold increase of web pages results in only 2 more additional ‘clicks’, but …

  27. Robustness and vulnerability How diameter or connectivity affected by deleting nodes randomly? Scale-free graph are more robust than random uniform graph Specific nodes are targeted? Diameter doubling when 5% important nodes removed Topology changes under attack? Fragment and break down Phrase change for deletion ratio : 0.28 in exponential graph & 0.18 in a scale-free network

  28. Web上节点重要度如何度量?

  29. 对网页重要性的评价 PageRank算法,HITS(Hyperlink Induced Topic Search)算法 都是为了利用HTML网页的链接特点,改善查询的效果 当Spam页面淹没了search engine的搜索结果页面时,除了页面内容与查询的相关性以外,页面本身的质量/重要性的作用就显现出来 Larry Page & Sergey Brin Jon Kleinberg

  30. PageRank Why and how it works?

  31. 重要度的度量 一阶指标(“入度”) 知晓关系:社会知名度 引用关系:认可程度 “高阶指标” 和一个著名人物“共同发表”论文的“距离”:越短似乎显得越“有荣誉”(例如,Erdos number,) Paul Erdös 刘翔

  32. 认识甲的人可能和认识乙的人一样多,但认识乙的人都是些“重要人物”,于是通常会认为乙比甲重要认识甲的人可能和认识乙的人一样多,但认识乙的人都是些“重要人物”,于是通常会认为乙比甲重要 不仅是人,论文也是一样,被重要的文章引用的文章可能就比较重要些 谁重要一些? 如何用一个模型来刻画这种感觉,使算出来的“重要性”反映这种感觉?

  33. 声望模型Reputation Model 给定一个群体S,及其在上面的一个“知晓”关系R,于是定义了一个有向“关系图”G。用邻接矩阵E表示,E(i,j)=1,当且仅当i “听说过” j(注意这里没有程度之分)。我们希望确定p(i):所有个体i∈S的“声望” 模型一:p(i) = ∑E[k,i],k=1,…,n,即i在G上的“入度”,亦即E的第i列的1的个数 清楚、好计算;但是“不够好” 模型二:p(i) = ∑E[k,i]p(k),k=1,…,n,即i的声望等于知晓他的人的声望之和 清楚、显得要更“精确些”;但是,好计算吗?

  34. 声望模型二 对于所有i,p(i) = ∑E[k,i]p(k),k=1,…,n 也就是,记p = (p(1), p(2), …, p(n))T, p = ETp 问题是: 这个方程存在解吗? 如果存在,如何得到? 如果不存在,该怎么办? 一般来讲:这个方程的非0解是不存在的!

  35. p = ETp 的不存在例 S = {1,2,3}, R = {<1,2>,<1,3>,<2,3>} E = ((0,1,1),(0,0,1),(0,0,0)) ET = ((0,0,0),(1,0,0),(1,1,0)) 不难看到,方程的成立p(1)=0p(2)=0p(3)=0 1 2 3 一般来讲,p = ETp,意味着要求ET有特征值1,这是很难得的。

  36. 先前那4个点的例子也无解 p = ETp (I- ET)p = 0 线性代数讲,此方程组有非0解,仅当行列式|I - ET| = 0 但我们算得|I - ET| = 2

  37. 即使有解,还有可能不唯一! S = {1,2,3}, R = {<1,2>,<2,3>,<3,1>} 不难看出任何 p(1) = p(2) = p(3) 都是解 怎么办?

  38. “Random Walker”模型 设想有一个永不休止、在网上浏览网页的人,随机选择一个链出的链接继续访问。我们问,在稳态情况下(足够长时间后),他会正在看哪一篇网页呢? 等价于:稳态情况下,每个网页v会有一个被访问的概率,p(v),它可以作为网页的重要程度的度量。 我们可以合理地设想:此时到达v的概率,依赖于上一个时刻到达“链向”v的网页的概率,以及那些网页中超链的个数。

  39. Random walker model p(v) = ∑E[u,v]*p(u)/du, over u 这里,du是网页u的“出度”,∑E[u,v] over u。 ∑p(u) = 1 u3 u1 V u4 u5 u2 稳定时:

  40. Random Walker Model (continue) 改写一下,成 形式上和“声望”模型一样,只是矩阵L有行向量元素和为1的性质。 有用吗? Dangling Node(出度为0的节点) 对于这些节点,矩阵L对应着元素全0的行,元素和不为1 修正:L[u,v] = 1/N if du=0

  41. Stochastic matrix 矩阵M,元素非负,每个行向量元素之和分别都等于1(亦称马尔科夫转移矩阵) L就是这种矩阵() 显然,随机矩阵的最大特征值为1,对应有一个全1元素的特征向量 转置矩阵的行列式和原矩阵的行列式相等 于是1也就是LT最大的特征值!

  42. 还有一点问题 上述“随机浏览”模型有稳态解的条件是:由网页形成的有向图允许通过链接关系访问到每一个网页 但有两个情况是破坏这条件的 图中形成“圈”(rank bounce) 有入度或者出度为0的点(rank sink) 因此该模型的表述通常要求所形成的图是irreducible(强连通)和aperiodic(不能有进去后出不来的圈)。

  43. 继续修改模型 让这浏览者每次以一定的概率(1-β)沿着超链走,以概率(β)重新随机选择一个新的起始节点 这在物理意义上即总是有可能跳进入度为0的点,跳出那些“圈”。在模型表达上即为 β选在0.1和0.2之间,被称作damping factor(Page & Brin 1997) G=(1-β)LT+ β/N(1N)被称为Google Matrix

  44. Google Matrix特征向量求解 Power Iteration方法: 给定Google Matrix G,记|λ1|≥|λ2| ≥…,q1是属于λ1的特征向量 初始化向量p0,使得||p0||1=1 对于k = 1, 2, …,执行如下步骤 x = Gpk-1, 基本迭代 pk = x/||x||1, 规格化步骤 可以证明(收敛速度) |pk – q1| = O(|λ2/λ1|k)

  45. 问题 GoogleMatrix的Power Iteration求解特征向量算法 一定会经过有限步迭代终止吗? 一定会得到有意义的解吗?(正解并且||p||1=1) 一定会得到唯一的解吗? 不管初始值P0如何,都会收敛到相同解吗? 是否需要很多次迭代才能收敛呢? Amy Langville, Carl Meyer, Google'sPageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, 2006.

  46. 例子(power iteration)

  47. 小规模数据求解 β取0.15 G= 0.85*LT+0.15/11(1N) P0=(1/11,1/11,….)T P1=GP0 ... 。。。。。。。 Power Iteration求解得(迭代50次) P=(0.033,0.384,0.343,0.039,0.081, 0.039,0.016……)T You can try this in MatLab

  48. 本次课小结 Web Graph的性质 Capture-recapture Bow-tie structure Power law Small world Graph Link Analysis 声望模型 Random Walker模型 PageRank算法

More Related