1 / 22

Molecular State Machines

Molecular State Machines. Masami Hagiya. Finite State Machines. Are the simplest formal computing device Have a finite number of states Change their state autonomously or according to inputs May produce outputs Are the first step towards general-purpose computers

katoka
Télécharger la présentation

Molecular State Machines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Molecular State Machines Masami Hagiya

  2. Finite State Machines • Are the simplest formal computing device • Have a finite number of states • Change their state autonomously or according to inputs • May produce outputs • Are the first step towards general-purpose computers • Have many kinds of applications • Switch • Memory (both holding contents and addressing)

  3. Molecular (DNA) State Machines • Terminal-sequence machines • The terminal sequence encodes the state. • Our whiplash machine • The machine gets longer as it changes the state. • Shapiro’s automaton • The machine gets shorter as it changes the state. • Conformational machines • The state is encoded as a structure. • Yurk’s molecular tweezers • Seeman’s PX-JX2 Switch • Our hairpin-based machine…

  4. : stopper sequence B 2) A B B C B A Whiplash PCR (WPCR) B 1) A C B A

  5. 4) A C B B A C B Whiplash PCR (WPCR) B A 3) B A C B

  6. Polymerization Stop

  7. B A B C B A A B B B A C Back-hybridization B A B A C B Competing Alternative Hairpin Forms

  8. Temperature optimization for WPCR ・8 M urea 8% PAGE Komiya, et al. not 59.8 65.9 74.0 82.1 89.8 incubated 62.2 69.9 78.0 86.1 92.2 (℃) Thermal schedule 94℃ for 1 min.   ↓ x ℃ for 5 min. x =59.8 ~ 92.2 in 1X Pfx buffer (the composition unknown) 1 mM MgSO4 0.2 mM dATP, dCTP, dGTP 1.5 units Platinum Pfx DNA polymerase

  9. Successful implementation of transitions ・12% PAGE Komiya, et al. ( bp ) 155 140 125 110 95 80 65 50

  10. Whiplash Machines • The machine changes its state according to its own transition table. • Various kinds of information can be encoded as a transition table. • Inputs to the machine can be a part of the table. • Multiple-data Multiple-program

  11. Shapiro’s DNA Automaton IIS-type restriction Restriction cite Spacer a’ Rest of input <S,a> <S,a> S,a → S’ Transition molecule a’ Rest of input Rest of input <S’,a’> The input sequence for a’ contains <S’,a’> for each state S’. The transition molecule cuts the input at the right place by the spacer.

  12. Shapiro’s DNA Automaton • Nature 2001 • 2 input symbols, 2 states • FokI a=CTGGCT b=CGCAGC 5’-p…22…GGATGTAC 3’-GGT…22…CCTACATGCCGAp S0,a→S0 5’-p…22…GGATGACGAC 3’-GGT…22…CCTACTGCTGCCGAp S0,a→S1

  13. Yurke: DNA Tweezers

  14. Seeman: PX-JX2 Switch

  15. Multi-state Molecular Machine input1 2 1 …… 3 3 input2 1 2 input3 …… 3 3 1 Our goals: Successive state change Input order sensitive …… 2

  16. Hairpin-based Machine

  17. シングルヘアピンの状態遷移確認実験 7 20 20 20 Oligomer Hairpin_template (67 bp + 3’ FITC) A B C D E 10 % PAGE A : Hairpin_template B : Hairpin_template + oligomer1 C : Hairpin_template + oligomer2 D : Hairpin_template + oligomer3 E : Hairpin_template + oligomer4 Oligomer1 Oligomer2 Oligomer3 Oligomer4 20 + 20 = 40bp 15 + 20 = 35bp 10 + 20 = 30bp 5 + 20 = 25bp Bではシングルヘアピン構造にオリゴマーが結合し,ヘアピン構造が開いて状態遷移している. そのためヘアピン構造を示すバンドが減少し,新たにヘアピン構造が開いた状態のバンドが現れている. Oliogomer : ヘアピン構造を開くために用いるssDNA

  18. 分子の構造変化経路 自由エネルギー • ΔG1の最小化⇒構造変化の高速化 • 妥当な変化経路の予測が必要 • 局所最適最短経路 • 大域最適最短経路 • 大域最適経路 ΔG1 ΔG2 二次構造

  19. DNAへのアゾベンゼンの導入 DNAに挿入されたアゾベンゼンの状態により,hybridizationの安定度が変化する。(Asanuma et al., 1999)

  20. 300 nm<l<400 nm 400 nm<l trans cis 二重鎖が解離 二重鎖が形成 二重鎖の形成と解離の光制御に成功

  21. Lights as Inputs (still a dream)

More Related