1 / 56

S C I E N T I F I C B A S I S O F M E D I C I N E 2 0 0 9

S C I E N T I F I C B A S I S O F M E D I C I N E 2 0 0 9. USMLE Step I Cardiovascular Boards Prep M A Y 1 3 , 2 0 0 9 Sanjiv J. Shah, MD Assistant Professor of Medicine Division of Cardiology, Department of Medicine sanjiv.shah@northwestern.edu.

keefer
Télécharger la présentation

S C I E N T I F I C B A S I S O F M E D I C I N E 2 0 0 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. S C I E N T I F I C B A S I S O F M E D I C I N E 2 0 0 9 USMLE Step I Cardiovascular Boards Prep M A Y 1 3 , 2 0 0 9 Sanjiv J. Shah, MD Assistant Professor of Medicine Division of Cardiology, Department of Medicine sanjiv.shah@northwestern.edu N O R T H W E S T E R N U N I V E R S I T Y F E I N B E R G S C H O O L O F M E D I C I N E

  2. Test-taking tips • Use First Aid as your primary resource and write in notes in the margins • Practice test questions • Rapidly changing areas / fields / clinical trials: unlikely to be tested • Importance of clinical associations: • ~80% of questions contain a clinical vignette • Remember the ultimate goal: third-year

  3. Anatomy • Carotid sheath: V-A-N • Internal jugular vein (lateral) • Common carotid artery (medial) • Vagus nerve (posterior) • Why is this important? • Need to know the anatomy for internal jugular vein cannulation (central line) • “Stick the carotid” = stroke / big bleed

  4. Anatomy • Jugular venous pulsations: • V wave: venous filling of right atrium T-wave • Y descent: passive emptying of RA as tricuspid valve opens in early diastole • A wave: atrial kick P-wave • X descent: atrial relaxation • C wave: tricuspid valve closure at onset of systole QRS

  5. Anatomy V A C X Y

  6. Anatomy • Cardiac chambers • RV most anterior • Susceptible to trauma (RV contusion, perforation) • Left atrium most posterior • Severe enlargement can cause dysphagia or hoarseness (recurrent laryngeal nerve) • LV makes up most of the heart’s mass • That is why normal ECG axis is leftward

  7. Anatomy • Cardiac chambers • CXR anatomy: • On PA film, most of what you normally see is the RV; if the heart enlarges it makes the heart wider (“cardiomegaly”) • On lateral film, RV is anterior, LV is posterior; this is used to help determine which chamber is causing cardiomegaly

  8. Anatomy • Coronary anatomy: coronaries fill in diastole • Left main coronary artery • Left anterior descending (LAD) • Septal perforators • Diagonal branches • Left circumflex (LCx) • Obtuse marginals • Right coronary artery (RCA) • Acute marginals • Posterior descending artery (in 70-80%) _________

  9. Anatomy • Coronary anatomy: • Left main coronary artery • Left anterior descending (LAD) ANTEROSEPTUM, APEX • Septal perforators SEPTUM • Diagonal branches ANTERIOR LV • Left circumflex (LCx) LATERAL LV • Obtuse marginals LATERAL LV • Right coronary artery (RCA) • Acute marginals RIGHT VENTRICLE • Posterior descending artery (in 70-80%) SEPTUM, INFERIOR LV, POSTERIOR LV

  10. Anatomy • Coronary anatomy: • Left main coronary artery • Left anterior descending (LAD) ANTEROSEPTUM, APEX • Septal perforators SEPTUM V1, V2 • Diagonal branches ANTERIOR LV V3, V4, V5, V6 • Left circumflex (LCx) LATERAL LV I, aVL • Obtuse marginals LATERAL LV I, aVL • Right coronary artery (RCA) • Acute marginals RIGHT VENTRICLE II, III, aVF; RV4 • Posterior descending artery (in 70-80%) SEPTUM, INFERIOR LV, POSTERIOR LV II, III, aVF; V7-V9

  11. Anatomy • Coronary anatomy: • Inferior LV: • Supplied by RCA in 70-80% • Supplied by LCx in 10-20% • Supplied by both RCA and LCx in 10% (co-dominant) • Why is coronary anatomy important? • Helps diagnose acute MI on ECG • Risk depends on location of MI (LAD = high-risk)

  12. Cardiac auscultation • Systolic murmurs: 8 main causes • Aortic stenosis • Aortic valve sclerosis • Mitral regurgitation • Tricuspid regurgitation • Hypertrophic cardiomyopathy • VSD • Pulmonic stenosis • Flow murmur

  13. Cardiac auscultation • Systolic murmurs: 8 main causes • Aortic stenosis (A, crescendo-decrescendo) • Aortic valve sclerosis (A, sounds like AS) • Mitral regurgitation (M, holosystolic) • Tricuspid regurgitation (T, holosystolic) • Hypertrophic cardiomyopathy (LSB, harsh) • VSD (LSB, harsh) • Pulmonic stenosis (P, harsh) • Flow murmur (A/P/T/M, quality varies) A = aortic, P = pulmonic, T = tricuspid, M = mitral, LSB = left sternal border

  14. Cardiac auscultation • Diastolic murmurs: 4 main causes • Aortic regurgitation • Mitral stenosis • Pulmonic regurgitation • Tricuspid stenosis

  15. Cardiac auscultation • Diastolic murmurs: 4 main causes • Aortic regurgitation (LSB, blowing) • Mitral stenosis (M, opening snap, rumble) • Pulmonic regurgitation (P) • Tricuspid stenosis (T) P = pulmonic, T = tricuspid, M = mitral, LSB = left sternal border

  16. Cardiac auscultation • Right-sided murmurs: • Increase during inspiration • Left-sided murmurs: • Increase during expiration • Atrial septal defect (ASD): • Doesn’t cause intrinsic murmur itself b/c low velocity flow (interatrial pressures not high) • But due to increased blood returning to R heart: • Flow murmur over pulmonic valve (systolic murmur) • Flow murmur over tricuspid valve (diastolic murmur)

  17. Cardiac auscultation • Murmurs you should know about: • Mitral regurgitation • Tricuspid regurgitation • Aortic stenosis • Ventricular septal defect (VSD) • Mitral valve prolapse • Aortic regurgitation • Mitral stenosis • Patent ductus arteriosus (PDA)

  18. Cardiac auscultation • Mitral regurgitation – L sided heart failure • Holosystolic, apex  axilla • Etiologies: LV dilation, CAD, MVP, rheumatic • Tricuspid regurgitation – R sided heart failure • Holosystolic, left sternal border, with inspiration • Etiologies: RV dilation, endocarditis, trauma, rheumatic • Aortic stenosis – angina, syncope, CHF • Crescendo-decrescendo, later-peaking = more severe • Decreased S2, pulsus parvus et tardus • Etiologies: calcific degenerative, bicuspid • Ventricular septal defect (VSD) – L sided heart failure • Harsh, holosystolic, left-sternal border • Etiologies: congenital, post-MI

  19. Cardiac auscultation • Mitral valve prolapse – atypical CP, endocarditis • Mid-systolic click, then MR • Aortic regurgitation – progressive LV dysfunction • Blowing diastolic murmur • Etiologies: bicuspid Ao valve, endocarditis, aortic root dilation • Mitral stenosis – L heart failure, pulmonary edema • Opening snap, diastolic rumble • Etiologies: rheumatic heart disease, calcific/degenerative • Patent ductus arteriosus (PDA) – L heart failure • Continuous machine-like murmur, loudest at S2

  20. Cardiac auscultation • Heart sounds: • S1: mitral and tricuspid valves closing • S2: aortic and pulmonic valves closing • Splitting: • Normal: A2-P2, splitting during inspiration • Paradoxical: P2-A2, splitting during expiration (AS, LBBB) • Wide splitting: A2-P2 but splitting exaggerated (PS) • Fixed splitting: A2-P2 and fixed splitting (ASD) • S3: early diastole; increased LV filling pressures • Normal in children • S4: late diastole; increased LV stiffness • Normal in aging

  21. Physiology • MAP = (SBP + (2 x DBP))/3 • Pulse pressure = SBP – DBP (≈SV) • MAP = CO x TPR • CO = HR x SV • SV = EDV – ESV • EF = SV/EDV • Resistance = pressure / flow • resistance with viscosity, length, radius • Resistance is greatest in arterioles

  22. Physiology • Know the determinants of stroke volume • Contractility (), preload (), afterload () • What increases contractility? • Anything that increases intracellular calcium • How do catecholamines, digoxin do this? • What decreases contractility? • Anything that decreases intracellular calcium • Know the difference between CCBs • Dihydropyridine vs non-dihydropyridine

  23. Physiology • Preload = EDV • Afterload = MAP • What drugs affect preload? • Venodilators (NTG) decrease preload • IV fluids increase preload • What drugs affect afterload? • Vasodilators (hydralazine, nitroprusside, minoxidil) decrease afterload • Vasopressors (phenylephrine, vasopressin) increase afterload

  24. Physiology • Understand Starling curve • Contractility proportional to preload • In the failing heart, the LV dilates initially in order to preserve stroke volume • Eventually the failing heart will “fall off the curve” so that increasing preload will not increase contractility • Understand pressure-volume loop

  25. Physiology systole AVC AVO LV pressure (mmHg) Isovolumic relaxation SV Isovolumic contraction diastole MVO MVC LV volume (mL) ESV EDV

  26. Physiology

  27. Physiology • Differential diagnosis of shock: • Low CVP, low CO, high SVR: hypovolemia • High CVP, low CO, high SVR: cardiogenic • Low CVP, high CO, low SVR: • Sepsis • Neurogenic • Anaphylaxis • Adrenal insufficiency

  28. Electrophysiology • Action potential: • Phase 0 • Phase 1 • Phase 2 • Phase 3 • Phase 4 • Know how pacemaker action potential differs from His-purkinje system

  29. Electrophysiology • Depolarization: Phase 0 • Rapid Na channels open • Slope = how fast cell depolarizes, speed of conduction • Repolarization: Phase 1-3 • Width of action potential (AP duration) • Refractory period • Plateau (Phase 2): unique to cardiac cells, due to slow Ca++ channels • Resting phase: Phase 4 • Automaticity occurs when there is leakage of cations into cell during Phase 4 (this occurs in pacemaker cells like SA and AV nodes) • Shape of action potential: • Depends on conduction velocity, refractory period, automaticity

  30. Electrophysiology • Sympathetic nervous system: • Increases automaticity • Increases conduction velocity • Decreases AP duration • Parasympathetic: vice-versa • Mainly innervates SA and AV node only

  31. Electrophysiology • Anti-arrhythmics: • Change shape of action potential • Alter conductivity and/or refractoriness • Class I: Na+ blockers (speed of depolarization) • Class II: beta-blockers ( sympathetic tone) • Class III: AP duration (increase refractoriness) • Class IV: Ca++ channel blockers (SA, AV node) • Class V: digoxin ( parasympathetic tone)

  32. Electrophysiology • Class I: • Ia: quinidine, procainamide, disopyramide • Slow upstroke of AP (decreases conductivity) • Prolong AP duration (increases refractoriness) • Ib: lidocaine, phenytoin, tocainide, mexiletine • Shorten AP duration, decreases refractoriness • Ic: flecainide, encainide, propafenone • Marked slowing of AP upstroke (conductivity)

  33. Electrophysiology • Class I: • Ia: quinidine, procainamide, disopyramide • Used to treat ventricular, atrial arrhythmias • Ib: lidocaine, phenytoin, tocainide, mexiletine • Used to treat ventricular arrhythmias • Ic: flecainide, encainide, propafenone • Used to treat atrial arrhythmias

  34. Electrophysiology • Class II: • Beta-blockers • Used to treat atrial arrhythmias • Class III: • Used to treat atrial and ventricular arrhythmias • Amiodarone, ibutilide, sotalol • Amiodarone also has beta-blocker effect • Class IV: • Calcium channel blockers, affect SA / AV node • Diltiazem, verapamil • Used to treat atrial arrhythmias (a.fib, a.flutter) • Class V: • Digoxin;  parasympathetic tone so mainly affects SA / AV node • Used to treat atrial arrhythmias (atrial fibrillation)

  35. Electrophysiology • Mechanisms of arrhythmias: • Automaticity, reentry, triggered activity • Anti-arrhythmic toxicity: • Ia, Ic: If you slow conduction (decrease AP upstroke), you will increase risk of reentry • Ia, III: If you increase refractoriness (increase AP duration), you prolong QT interval and increase risk of torsades de points

  36. Electrophysiology • ECG pearls: • P wave: atrial depolarization • PR interval: onset of P to onset of QRS • Corresponds to A-V delay (<200 ms) • QRS: ventricular depolarization (<120 ms) • T wave: ventricular repolarization • QT interval: onset of QRS to end of T wave

  37. Electrophysiology • ECG pearls: • Irregularly irregular? Think atrial fibrillation • Look for absence of P-waves • Rate control, anticoagulation, anti-arrhythmics • Atrial flutter: “saw-tooth” in inferior leads • Rate control, anticoagulation, anti-arrhythmics • Know what torsades de pointes looks like • Caused by anything that prolongs QT interval • WPW: delta wave – slurred QRS upstroke

  38. Electrophysiology • ECG pearls: • AV block: • 1st degree: PR interval > 200 ms • 2nd degree: • Mobitz type I: progressive increase in PR interval, progressive decrease in RR interval until dropped P • Mobitz type II: regularly dropped P wave (PR constant) • 3rd degree: complete AV dissociation (P and QRS complexes have no relationship and are independent of each other) • Treat with pacemaker; can be seen in Lyme disease AV node problem (okay) His bundle problem (usually bad)

  39. Congenital heart disease • Right-to-left shunts: • Blue babies • “Terrible Ts”: • Tetralogy, transposition, truncus arteriosus, tricuspid atresia, TAPVR • Or anything that obstructs RV + shunt • Tetralogy: PS, RVH, overriding aorta, VSD • Caused by anterosuperior displacement of infundibular septum; boot-shaped heart on CXR

  40. Congenital heart disease • Left-to-right shunts: • VSD, ASD, PDA • VSD most common congenital anomaly after bicuspid aortic valve • Late cyanosis • Due to Eisenmenger’s syndrome • Development of pulmonary hypertension with reversal of shunt direction due to RV pressure

  41. Congenital heart disease • Transposition • Aorta comes off of RV, PA comes off of LV • Need shunt (PFO, ASD, VSD, PDA, etc) to live • Failure of aorticopulmonary septum to spiral • Coarctation: associated with Turner syndrome • Preductal / infantile – mimics aortic stenosis • Post ductal / adult – hypertension in upper extremities • PDA • Indomethacin closes, PGE keeps it open • Normal in utero, closes only after birth • Bicuspid aortic valve • Can cause aortic stenosis or aortic regurgitation (AS occurs in 40s-50s) • Associated with coarctation, Ao root dilation

  42. Congestive heart failure • Syndrome based on signs / symptoms • Differential diagnosis is broad • Dilated: systolic dysfunction • Alcohol, viral, cocaine, Chagas, chemo, peripartum • Hypertrophic: diastolic dysfunction • Septal hypertrophy = dynamic outflow tract obstruction • Treat by decreasing contractility • Restrictive: diastolic dysfunction • Amyloid, radiation, sarcoid, hemochromatosis

  43. Congestive heart failure • Understand the pathophysiology behind clinical manifestations (signs/symptoms) • Dyspnea on exertion (can’t augment CO) • Pulmonary edema (increased pulmonary venous pressure) • Orthopnea (increased venous return) • Hepatomegaly (increased venous pressure) • Elevated jugular venous pressure, edema

  44. Congestive heart failure • Understand how therapy works • Remember that low CO results in: • Sympathetic overload: beta-blockers, vasodilators • Renin-angiotensin-aldosterone: ACE/ARB, aldosterone antagonists • Increased ADH (increased aquaporin): vasopressin antagonists • All of the above result in increased sodium retention: diuretics

  45. Congestive heart failure • Understand mechanism of action of diuretics • Acetazolamide • Na/H in proximal tubule • Loop diuretics • Thick ascending limb loop of Henle Na/K/2Cl • Thiazide diuretics • Distal convoluted tubule Na/Cl • Potassium sparing diuretics • Spironolactone vs others

  46. Congestive heart failure • Digoxin: a board exam favorite… • Inhibits Na/K ATPase directly • Indirectly inhibits Na/Ca exchanger • More Ca++ in cell = increased contractility • Also stimulates vagus nerve = parasymp. • Hypokalemia = increased toxicity (more dig can bind to Na/K ATPase b/c competes w/K) • Know ECG effects (e.g., scooped ST segment)

  47. Ischemic heart disease • Atherosclerosis: • Differentiate from • Monckeberg arteriosclerosis • Hypertensive arteriosclerosis • Pathogenesis • CAD / angina: • Understand pathophysiologic differences underlying different manifestations • Stable vs Prinzmetal’s vs unstable

  48. Ischemic heart disease • Myocardial infarction: • Diagnosis: ECG  troponin  CK-MB • Type: transmural vs subendocardial • ST elevation vs ST depression • Complications • Arrhythmia • CHF / pulmonary edema • Cardiogenic shock • Cardiac rupture (free wall, VSD, pap muscle) • LV aneurysm • Fibrinous pericarditis (early) • Dressler’s syndrome (late)

  49. Ischemic heart disease • Evolution of MI: • Day 1: release of necrotic contents into blood stream (triggers inflamm. response) • Day 2-4: acute inflammation, extensive necrosis, hyperemia: arrhythmia • Day 5-10: hyperemic border, macrophage-induced degradation: rupture • 1-2 weeks: scar formation: LV aneurysm

  50. Infectious heart disease • Bacterial endocarditis: • Roth spots, Osler’s nodes, Janeway lesions, splinters • Libman-Sacks endocarditis: • Sterile vegetations of lupus: mitral • Marantic endocarditis: • Assoc with malignancy, anti-phospholipid syndrome • Usually associated with mitral valve, sterile • Syphilis: tertiary = disrupts vaso vasorum • Aortic dilation, aortic regurgitation

More Related