480 likes | 599 Vues
methodology for course mapping. demonstrated in three cases. The problem. To compare, translate and exchange Educations modules (≈courses) between different education systems. This requires the modules to be described in such a way that it is possible for other partners to understand them
E N D
methodology for course mapping • demonstrated in three cases
The problem • To compare, translate and exchange Educations modules (≈courses) between different education systems. • This requires the modules to be described in such a way that it is possible for other partners to understand them • It requires a common understanding of the basic elements that form an education module and their meaning • In the next step the modules are integrated into an education system in order to enable merits transfers for the students
General idea: From this Univ H Univ A Univ G Univ B Univ F Univ E Univ C Univ D
ECTS TO THIS Univ H Univ A Univ G Univ B Univ F Univ E Univ C Univ D
Theoretical background • Metrology
Why metrology? • It is all about measure certain aspects of a course. • These measurements are to be compared • It is not sufficient to compare only the figures, also the measurement scale and the measurement method must be investigated. • Börje Langefors formulated 1966 a theory on information systems, where the systems was considered as a set of entities with relations between them, manifested in certain state variables.
System-name Added by Kristo Ivanov 1972 State variable Varible Attribute-name Value Time Uncertainty of value
System-name More is needed Entity Attribute-name Value Measurement unit Measurement procedure Time Uncertainty of value Weltanschauung
Course name • Size, Volume • Admittance criteria • description • Period • Goal • Contact person • Content • Level in the system • Evaluation • Literature • Host department • Teacher(s) • Schedule • Course code • Subject course attributes-ex
Attribute-name Volume Value 5 Measurement unit POINTS Measurement procedure Student work weeks Time Spring 06 Uncertainty 0% Weltanschauung Student works Example: Course (VXU)
Attribute-name Volume Value 7,5 Measurement unit ECTS Measurement procedure Workload, complexity Time Spring 06 Uncertainty 0% Weltanschauung Learning units Same example (Bologna)
Comments • Since the Weltanschauung is not the same, the meaning of the attribute “Volume” is not the same. • Thus there is a problem with translation between them. • How can we ensure a correct translation? • We must simply describe our courses in another world view, in terms of another system. • Sometimes this means we can’t describe parts of our courses and we have to introduce foreign concepts and viewpoints.
Course • Every university have templates for describing courses • There are certain information which must be present such as admittance requirements, time period, name of the course, contact person and some more or less – usually more – cryptical description. • Here we shall concentrate on four types of attributes.
UNIT OF ANALYSIS COURSE CONTENT GOAL WORKLOAD CONTEXT
CONTENT • THERE ARE SEVERAL CURRICULUM AROUND: • The ACM curriculum • The IFIP-curriculum • There are, to our knowledge, no common European curriculum within informatics • In any case there must be a description of the course content referring to some common ontology
Goal • Describes what the participants should learn about the content. • Describes also what type of knowledge they should demonstrate • Ontology: Bloom’s taxonomy and Dublin descriptors
1. Knowledge Describe, define, present 2. Understanding Proof, explain, motivate, interpret, translate 3. Application Use, do, measure, observe, perform 4. Analysis Divide, group, identify, compare, classify, investigate 5. Synthesis Conclusions, rules, organise, produce, connections 6. Value Judge, make decisions, scrutinise, critique Bloom’s taxonomy Used for classifying learning goals. For every course at least two of them should be relevant.
Dublin descriptors • Five dimensions which are used for judging the level of a specific course/learning unit. Nothing to do with examination! • Knowledge and understanding • Application of knowledge and understanding • Ability to do judgements • Ability to communicate • Study skill
Dublin descriptors applied • in combination with Bloom
Knowledge and understanding • Bachelor • Supported by advanced books and with some perspectives from the research area • Master • Providing a base for originality in use or development of ideas, often related to research
Application of knowledge • Bachelor • Ability to provide and support arguments • Master • Ability to solve problems in new and broader (pluralistic, cross-scientific) contexts
Ability to judge • Bachelor • Collect and interpret relevant information • Master • Showing ability to integrate knowledge and master complexity and do judgements based upon insufficient information
Ability to communicate • Bachelor • Describe information, ideas, problem and solutions • Master • Describe the conclusions and the knowledge they are based upon (to some extent) for both specialists and ordinary people
Study skill • Bachelor • Being able to continue the studies with a high degree of independence • Master • Being able to continue the studies almost independent
Grading • The ECTS grading can be easily mapped to Bloom’s taxonomy in combination with the Dublin core descriptors • However, there is no easy way for mechanical translation from other grading systems • By providing a detailed description of grading criteria, the process could be easier to carry out • The grade is a qualitative measure, based upon the judgement of the teacher
Grading scale • A=Excellent • B=Very good • -------------------------------------- • C=Good • D=Acceptable • E=Just acceptable • -------------------------------------- • FX = Barely failed • F=Failed The excellent performance The good performance The not so very good performance
The grading procedure 1 • The examinee should demonstrate his or her knowledge about and skill in using the concepts, methods and data which belong to the course. • The examinee should put forward his or her knowledge and motivate why it is brought forward in the actual context. • The knowledge is shown by the collection of concepts, methods and data • The understanding of the examininee is shown by the evaluation of the chosen set of concepts, methods and data.
The grading procedure 2 • The evaluation is done by describing the relation between concepts, methods and data, different kind of generalisations all seen from a critical point of view. • The examinee uses his or her knowledge to demonstrate how the actual concepts, methods and data can be used to solve a problem of known type. • The demonstration is valued according to the complexity of the problem • If possible, the examninee can also demonstrate how problems of unknown type can be solved with the actual concepts, methods and data
The excellent performance • The examinee has a very exhaustive knowledge about concepts, methods and data • The examinee describes these including almost every relevant circumstances • The examinee gives an almost total motivation for using these concepts, methods and data • The examinee relates, combines and generalises concepts, methods and data in a very confident and talented way • The examinee uses his/her knowledge for solving known problems in a very talented way and may eventually also demonstrate solving of unknown problems
The good performance • The examinee has an exhaustive knowledge about concepts, methods and data • The examinee describes these including many relevant circumstances • The examinee gives an acceptable motivation for using these concepts, methods and data • The examinee relates, combines and generalises concepts, methods and data in a sufficiently confident way • The examinee uses his/her knowledge for solving known problems in an acceptable way
The not so very good performance • The examinee has knowledge about some concepts, methods and data, but they are too few • The examinee describes these including only few relevant circumstances • The examinee gives not an acceptable motivation for using these concepts, methods and data • The examinee relates, combines and generalises concepts, methods and data in an uacceptable way • The examinee uses his/her knowledge for solving known problems in an unacceptable way
Bloom & Dublin Curriculum UNIT OF ANALYSIS COURSE CONTENT GOAL WORKLOAD CONTEXT
Workload • Can be interpreted in different ways: • Number of full-time weeks the student in average (?) needs for passing the course with acceptable grading • Number of contacthours per week for the student • Amount of work needed during the whole semester • The ECTS, points, credit points etc. is a quantitative measure • There are intrinsic measurement procedures to carry out
Context • Is the most important type of the attributes • Affects all of the other and provides a base for understanding • The Weltanschauung is an important part of the context
Formalisation • at least to some degree
Translation • Content • Agree on some curriculum • Provide an exhaustive description • Which leveL • Apply Dublin descriptors • How many ECTS (volume, size, workload)? • This is described on the following slides • Context, Weltanschauung • This must be known. Also discussed • Let us start with the volume
For VXU • <Attribute name: Volume> <Meas. value: 5 > • <Meas. unit: points> • <Meas. procedure: one week, 40 h=1 point > • <Time: Autumn of 2006> • < Weltanschauung: Student work >
For FH • <Attribute name: Volume> <Meas. value: 6 > • <Meas. unit: ECTS> • <Meas. procedure: unknown > • <Time: Autumn of 2006> • < Weltanschauung: Qualification units >
For KBTUT • <Attribute name: Volume> <Meas. value: 2 > • <Meas. unit: credit points> • <Meas. procedure: X credit points * (15*2)> • <Time: Autumn of 2006> • < Weltanschauung: Study time divided in 600 credit points>
For ECTS • <Attribute name: Volume> <Meas. value: 5 > • <Meas. unit: ECTS credits> • <Meas. procedure: Learning Units (content*workload)> • <Time: Autumn of 2006> • <Weltanschauung: Study time for receiving the qualification>
Conceptual graph VXU Define Course Component Objective Instance of Type of Component Extent Lecture Lab work Examination Study hours
Conceptual graph FH Define Qualifications/ learning goals Knowledge unit Instance of Knowledge Component Extent Lecture Instance of Lab work Examination Study hours Complexity
Conceptual graph KBTUT Define Purpose/goal Discipline 600 credit point system Instance of Knowledge Component Extent Lecture Study hours Lab work Examination
Conceptual graph ECTS Descide Learning goal Content Divided in Is realised through Qualifications Acuiring methods Lecture Lab work Examination
Simple mapping SWE ECTS Course Course Name Name x 1,5 Volume Volume Goal Goal etc etc
Correct mapping ECTS SWE Course Learning Unit Course M Name Name Content M 1 M Volume ECTS Volume 1 Goal Goal 1 etc etc