1 / 9

Guidelines for Tentative Identification

Guidelines for Tentative Identification. Whether the constant term δshould be included in the model 通常經過差分之後,常數項接近 0 ,在對常數的檢定上常會發現是不顯著的,在模式可設定常數為 0. SAS 報表. Which of the AR factor or MA factor should be included in the model 觀察 ac 及 pac 的表現,選出明顯夠大的 lag ,其組合是模式的候選者。.

keola
Télécharger la présentation

Guidelines for Tentative Identification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Guidelines for Tentative Identification • Whether the constant term δshould be included in the model • 通常經過差分之後,常數項接近 0,在對常數的檢定上常會發現是不顯著的,在模式可設定常數為 0 SAS 報表

  2. Which of the AR factor or MA factor should be included in the model • 觀察 ac 及 pac 的表現,選出明顯夠大的 lag,其組合是模式的候選者。 lag =17 lag =6 lag =4 lag =26

  3. 模式與適合性的檢測 • a. 參數檢定 • 當參數的檢定結果為不顯著時,表示此參數為 0,此項不宜放在模式中,是一 overfitting 的現象。 • b. 殘差分析 • 合適的模式的殘差應是無自相關性的,若殘差的 ac 或 pac 有明顯不為 0 之值,表示 ARMA 模式尚未完全處理自相關情況,是一 underfitting 的現象,宜增加 order 。 • c. 不論 overfitting 或是 underfitting ,AIC值總會增加。 AICk = n ln(SSEk) – n ln(n) + 2k,k=參數個數

  4. Example、 IBM stock price series

  5. 步驟一、 原序列之 acf 呈現緩慢消失,為非穩定型 (nonstationary)。做一次差分轉換後,檢定結果為穩定型,對應的acf, pacf 如下 Lag = 4, 6, 17, 26 時,acf, pacf 較顯著 報表一

  6. 步驟二、 設定常數為 0 當選擇 AR:4,6 或是 MA:4,6 時,殘差的 ac 及 pac 在 lag =17時明顯大於 0,在 lag = 26 時,則無此現象。 報表二 當選擇 AR:4,17 或是 MA:4,17 時,殘差的 pac 在 lag = 6 時接近顯著。 報表三 以 Lag = 4, 6, 17,為建模之依據

  7. 報表四 報表五 AR:4, 6, 17的模式有最小的 AIC 與 SBC 值

  8. 步驟三、 選擇 AR:4,6,17為預測式 Model for variable Yt Period(s) of Differencing 1No mean term in this model Autoregressive Factors Factor 1: 1 + 0.1208 B**(4) - 0.10771 B**(6) - 0.19324 B**(17) SAS 報表

  9. 決選的預測式 此式將作為解釋序列現象,及預測用。

More Related