1 / 20

Animal Agriculture and Climate Change

Animal Agriculture and Climate Change. Jack Matyus. Animal Agriculture. Domestication throughout history Population and industrialisation Increase efficiency and cheaper meat. Animal Agriculture. Image : FAO (2012), UNEP GEAS (2012) . UNEP GEAS (2012). Animal Agriculture.

kesia
Télécharger la présentation

Animal Agriculture and Climate Change

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Animal Agriculture and Climate Change Jack Matyus

  2. Animal Agriculture • Domestication throughout history • Population and industrialisation • Increase efficiency and cheaper meat

  3. Animal Agriculture Image: FAO (2012), UNEP GEAS (2012) UNEP GEAS (2012)

  4. Animal Agriculture Image: FOA (2012), UNEP GEAS (2012) UNEP GEAS (2012), Delgada et al. (2001)

  5. Animal Agriculture Image: FOA (2012), UNEP GEAS (2012) UNEP GEAS (2012), Delgada et al. (2001), WRI (2005)

  6. Animal Agriculture • Expected population of 9 billion by 2050 • Meat consumption increase • 450 million tonnes in 2050 (65% increase from 2000) UNEP GEAS (2012), FOA (2012),Steinfeld et al. (2006)

  7. Why is this significant?

  8. Climate Change • Industrialisation and size of the industry • Pollution, deforestation, desertification and overuse of freshwater • Greenhouse gases and climate change UNEP GEAS (2012), Steinfeld et al. (2006), WRI (2005)

  9. Climate Change • Estimated 10-35% GHG emissions due to agriculture • Near 80% of those emissions due to animal agriculture • Deforestation, land use, indirect factors UNEP GEAS (2012), Denman et al. (2007), EPA (2006), McMichael (2007), Stern (2006), Steinfeldet al. (2006)

  10. Climate Change Image: WRI (2005) UNEP GEAS (2012), Denman et al. (2007), EPA (2006), McMichael (2007), Stern (2006), Steinfeld et al. (2006), WRI (2005)

  11. Climate Change Image: EPA (2006), O’Mara (2011) • Cattle have largest impact • 1.43 billion cattle (2010); 33% Asia, 25% S. America, 20% Africa UNEP GEAS (2012)

  12. Solutions? • Income likely to continue to increase • Especially in fastest growing regions – Asia, Africa • Higher demand, higher emissions O’Mara (2011)

  13. Solutions • Change diet of livestock, reduce methane • Ruminal pH and microbiota • Lipid supplementation – reduction in methane production UNEP GEAS (2012), Lesschen et al. (2011), Hook et al. (2010), Boadi et al. (2004)

  14. Solutions • Change diet of livestock, increase productivity • More methane with more product • Methane per unit of product low UNEP GEAS (2012), Lesschen et al. (2011), Hook et al. (2010), Boadi et al. (2004)

  15. Solutions • Reduce livestock • Alternatives • Lower demand and affects the industry • Public opinion and behaviour UNEP GEAS (2012), McMichael et al. (2007), Carlsson-Kanyama and González (2009), Lesschen et al. (2011), Barclay (2012)

  16. Solutions • Alternate livestock, less methane • Pigs instead of cows? • Insects UNEP GEAS (2012), McMichael et al. (2007), Carlsson-Kanyama and González (2009), Lesschen et al. (2011), Barclay (2012)

  17. Conclusion Image: FAO (2012), UNEP GEAS (2012)

  18. References UNEP GEAS (2012) Growing greenhouse gas emissions due to meat production[PDF] UNEP GEAS. Available from: http://www.unep.org/pdf/unep-geas_oct_2012.pdf [06/03/2014] Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., and Courbois, C. (2001) Livestock to 2020: the next food revolution. Outlook on Agriculture, 30(1), pp. 27-19 WRI (2005) Navigating the numbers: Greenhouse Gas Data and International Climate Policy[PDF] WRI. Available from: http://pdf.wri.org/navigating_numbers.pdf [06/03/2014] Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and de Haan, C. (2006) Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations(FAO), Rome, Italy Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P.L., Wofsy, S.C., Zhang, X. (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 499–587 McMichael, A.J., Powles, J.W., Butler, C.D. and Uauy, R. (2007) Food, livestock production, energy, climate change, and health. Lancet 370, pp. 1253–1263 Stern, N. (2006). The economics of climate change: the Stern review. Cambridge: Cambridge University Press, 2006 O’Mara, F.P. (2011) The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Animal Feed Science and Technology, pp. 166-167, 7-15

  19. References Lesschen, J.P., van den Berg, M., Westhoek, H.J., Witzke, H.P., Oenema, O. (2011) Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology, 166-167, pp. 16-28 Hook, S., Wright, A.D.G., and McBride, B.W. (2010) Methanogens: Methane Producers of the Rumen and Mitigation Strategies, Archae, 2010, pp. 1-11 Boadi, D., Benchaar, C., Chiquette, J., and Masse, D. (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84, pp. 319-335 Carlsson-Kanyama, A., González, A. D. (2009). Potential contributions of food consumption patterns to climate change. The American Journal of Clinical Nutrition 2009, 89 Barclay, J. M.G. (2012). Meat, a damaging extravagence: a response to Grumett and Gorringe. The Expository Times, 123(2), pp. 70-73

  20. Questions?

More Related