1 / 43

Optimal Networks

Optimal Networks. Mirka Miller School of Information Technology and Mathematical Sciences University of Ballarat m.miller@ballarat.edu.au. Outline of the talk. Interconnection networks Degree/diameter problem – directed and undirected

kevlyn
Télécharger la présentation

Optimal Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Optimal Networks Mirka Miller School of Information Technology and Mathematical Sciences University of Ballarat m.miller@ballarat.edu.au Centre for Informatics and Applied Optimization

  2. Outline of the talk • Interconnection networks • Degree/diameter problem – directed and undirected • Recent new results concerning graphs close to Moore bound • Three extremal problems • Open problems

  3. Interconnection networks Examples: • Communications • Transportation • Computer • Social Networks can be modeled as graphs. The structure (topology) of the graph is useful when designing algorithms (for communication, broadcasting etc.) and for analyzing the performance of a network.

  4. Small-world networks

  5. WWW (2000)

  6. Network parameters TopologyNodes and edges and their arrangement.DiameterMaximum distance between any pair of nodes.ConnectivityNumber of neighbours of a given node: d degreeClusteringAre neighbours of a node also neighbours among themselves?

  7. Most “real life” networks • small-world scale-free small diameter Milgram 1967 clustered Watts & Strogatz 1998 degrees follow a power-law Barabási & Albert 1999

  8. Network topology Structured • high clustering • large diameter • regular Small-world • high clustering • small diameter • almost regular Random • low clustering • small diameter |V| = 1000 d= 10 D = 100 C = 0.67 |V|=1000 d= 8-13 D = 14 C = 0.63 |V|=1000 d= 5-18 D = 5 C = 0.01

  9. Definitions We study graphs with respect to 3 parameters: diameter, degree and order. • Diameter • The longest distance between any two vertices in the graph. • Degree • The number of edges attached to a vertex. • Order • The number of vertices in the graph.

  10. Degree/diameter problem Determine the largest number of vertices n of a graph G for given maximum degree d and diameter at most k. • Survey by Miller and Siran “Moore bound and beyond: A survey of the degree/diameter problem” • Research supported by a grant from Australian Research Council (ARC) CI’s: McKay and Miller

  11. Degree/diameter problem Directed version: Determine the largest number of vertices n of a digraph G for given maximum out-degree d and diameter at most k.

  12. Degree/diameter problem Approaches to attack the problem Increase the lower bound: by construction • Voltage assignments • Line digraphs • Computer search • Etc. Decrease the upper bound: by proving a graph with given parameters cannot exist

  13. Upper bound v A natural upper bound on the number of vertices n of digraph G with given maximum out-degree d and diameter at most k is: n  Md,k = 1+d +d 2 + … + d k. This bound is called the Moore bound. A digraph attaining this bound is called a Moore digraph.

  14. Moore digraphs Plesnik & Znam ’74, Bridges & Toueg ’80 : Moore digraphs exist only for trivialcases, namely for d =1 (cycles of k+1 vertices) or k =1 (complete digraphs on d+1 vertices).

  15. Moore digraphs Outline of the PROOF that (d,k)-digraphsdo not exist when d> 1 and k > 1 : I+A+…+Ak=J where A is adjacency matrix of G, J isunit matrix, I isidentity matrix J has eigenvalues n (once)and 0 (n-1 times) A has eigenvaluesd (once)and n-1 roots of the characteristic equation 1+ x+x2+…xk = 0 x = 0 and roots of xk+1-1 =0 Since tr(Aj)=0 for 1  jk, we obtain –d=-dk and so d=1 or k=1 are the only solutions.

  16. Diregularity of AMDs Is Md,k–1 attainable for all d>1 and k>1? Notation. (d,k)-digraph is a digraph of maximum out-degree d, diameter k and order n = Md,k – 1. (We also call such a digraph almost Moore digraph). Miller, Gimbert, Siran & Slamin, ‘00: The (d,k)-digraphs are diregular of degree d. Note that: to show the regularity of out-degree is easy (by a counting argument). However, to show the regularity of in-degree is not easy.

  17. Repeat of a vertex Let G be a (d,k)-digraph. • For every vertex x of G there exists a vertex y, called the repeat of x, such that there are two walks of lengths  k from x to y. • If r(x) = x then vertex x is called a selfrepeat. • The function r : V(G)  V(G) is an automorphism on V(G); namely, (x,y)  E(G) iff (r (x), r (y))  E(G). • Let the order of vertex v be the smallest positive integer (v) so that r (v)(v)= v.

  18. Diameter 2 Fiol, Allegre, and Yebra ’83: (d,2)-digraphs exist for any d  2. • Example: The line digraph of L(Kd+1) of the complete digraph Kd+1. • But Gimbert ’01 showed that this line digraph is the only (d,2)-digraph if d 3.

  19. Diameter 2, degree 2 3 1 2 1 4 4 5 3 2 1 2 4 5 5 6 3 6 6 (123)(456) (1)(2)(3)(4)(5)(6) (12)(3456) All order 3 All selfrepeats Two order 2; four order 4 There are exactly three (2,2)-digraphs.

  20. Degree 2 and degree 3 Miller and Fris ’92: There are no (2,k)-digraphs for any k  3. Baskoro, Miller, Siran & Sutton (in press): There are no (3,k)-digraphs for any k  3. The remaining cases are still open: Do there exist any (d,k)-digraphs, d  4, k  3?

  21. Existence of (d,k)-digraphs A (d,k)-digraph, d  4, k  3 (if it exists) may contain a selfrepeat or no selfrepeat. Further study may focus on the existence of: • (d,k)-digraphs with selfrepeats • (d,k)-digraphs with no selfrepeats

  22. Structure of the orders of vertices • A (d,k)-digraph contains either k selfrepeats or none. [Baskoro, Miller, Plesnik, ’98]

  23. The orders of vertices • We can determine the structure of the orders of vertices in a (d,k)-digraph with selfrepeats,d 2, k 2. [Baskoro, Cholily, Miller, ’04]

  24. The orders of vertices Example.k=2, d=6. Label vertices 0,1,2,…,41. Suppose the digraph G contains a selfrepeat and that the out-neighbourhood of a selfrepeat consists of vertices of orders 2 and 3 (as well as a selfrepeat). Then (up to isomorphism) the permutation cycles of repeats of G are (0) (1) (2,3)(4,5,6) (7,8)(9,10,11)(12,18)(13,19)(14,20) (15,21,16,22,17,23)(24,30,36)(25,31,37)(26,32,38)(27,33,39) (28,34,40)(29,35,41) Two cycles of length 1, five cycles of length 2, eight cycles of length 3, one cycle of length 6.

  25. Open problems • Are there any (d,k)-digraphs, d 4, k 3, with selfrepeats? • Are there any (d,k)-digraphs, d 4, k 3, without selfrepeats? • For d= 3, k 3, are there any digraphs of order M3,k– 2? • For d= 2, k 3, are there any digraphs of order Md,k– 3? • Are almost almost Moore digraphs diregular?

  26. Degree/diameter problem Undirected version: Determine the largest number of vertices n of a graph G for given maximum degree d and diameter at most k.

  27. Upper bound v A natural upper bound on the number of vertices n of a graph G of given maximum degree d and diameter at most k is: n  Md,k=1+d+d(d-1)+…+d(d-1)k-1 • This bound is called the Moore bound. • A graph attaining this bound is called a Moore graph.

  28. Moore graphs k =1: Moore graphs are complete graphs on d+1 vertices. Hoffman and Singleton, ’60: k =2: Moore graphs exist for d =2 (pentagon) or d =3 (Petersen graph) or d =7 (Hoffman-Singleton graph) or d =57? k =3: Moore graph exists for d =2 (7-gon). Damerell; Bannai and Ito, ’73: k >3: Moore graph are (2k+1)-gons.

  29. Almost Moore graphs Is Md,k–1 attainable for all d>2 and k>1? Erdos, Fajtlowicz and Hoffman, ’80: k =2: almost Moore graphexists only for d =2 (4-cycle). Bannai and Ito; Kurosawa and Tsujii, ’81: k >3: almost Moore graphsexist only for d =2 (2k-gons).

  30. Graphs with defect > 1 Defect 2: d =2: (2k-1)-gons. d >2: only 5 such graphs are known so far: (d,k) = (3,2) (two); (4,2); (5,2); (3,3) (unique).

  31. Almost almost Moore graphs • There are no almost almost Moore graphs of degree 3 and diameter k>3. [Jorgensen, ’92] • Theorem 6. For k>2,there are no almost almost Moore graphs of degree 4. [Miller and Simanjuntak, ’04]

  32. Repeat of a vertex Define (d,k,d)-graph to be a graph of degree d, diameter k and defect d. Vertex y is a maximal repeat of x if y appears in R(x)d times (x has no other repeats). Theorem 7. For d >1,the number of maximal repeats in a(d,2,d)-graphis 0 or 2 or 6. [Nguyen and Miller, ’04]

  33. Structure of a (d,2,2)-graph Possible repeat configurations in a (d,2,2)-graph: u u u r1(u) r2(u) r(u) r1(u) r2(u) u u r1(u) r2(u) r1(u) r2(u) Define n0,n1,n2a,n2b,n2c.

  34. Structure of a (d,2,2)-graph Theorem 7. A (d,2,2)-graphcontains • if d is even then n0 = 3 and n2b = d2 – 4 • if d = 3 then (n0,n1,n2c) = (3,2,3) • if d is odd then (n0,n1,n2c,n2a,n2b) = (9,6,9,4a,d2-25-4a) or n2b = d2 – 1. [Nguyen and Miller, ’04]

  35. Open problems • Are there any (d,2,2)-graphs for d 6? • Are there any (d,k,2)-graphs for d 5 and k 3? • Are there any (3,k,3)-graphs fork 4? • Are there any (4,k,3)-graphs fork 3? . . . • Is there a Moore graph with diameter 2 and degree 57?

  36. Open problems • We know that for directed graphs N(d,k)is monotonic in both d and k. Let K(n,d)be the smallest possible diameter of a digraph on n vertices and maximum out-degree d. Is K(n,d)monotonic in n? For undirected graphs we know that the corresponding K(n,d) is not monotonic in n.

  37. Example. K(10,3) = K(8,3) = 2 n = 8 n = 10 but K(9,3) = 3! ncannot be more than 10

  38. Three optimisation problems • N(d,k) = max{n: G(n,d,k)} • D(n,k) = min{d: G(n,d,k)} • K(n,d) = min{k: G(n,d,k)} • G(n,d,k) denotes the set of all directed graphs of order n, degree d, and diameter k. Question: are these three problems equivalent to each other?

  39. Known monotonic relationships • d1<d2 implies N(d1,k)< N(d2,k) • k1<k2 implies N(d,k1)< N(d,k2) • d1<d2 implies K(n,d1) K(n,d2) ?n1<n2 implies K(n1,d)  K(n2,d) ?k1<k2 implies D(n,k1)  D(n,k2) ?n1<n2 implies D(n1,k)  D(n2,k)

  40. K(n,d) problem digraph G of degree d, diameter k and order n line digraph construction digraph L(G) of degree d, order dn and diameter k+1 Vertex deletion scheme

  41. K(n,d) problem Theorem [Slamin & Miller,’00] If L(G) G(dn,d,k) is a line digraph of a diregular digraph GG(n,d,k-1) then there exists digraph L(G) G(dn-r,d,k’), k’k, for every 1r (d-1)n-1 nd n

  42. K(n,d) problem The largest n such that G(n,d,k-1) is not empty for given d. G(nd,d,k) The largest n’ such that G(n’,d,k) is not empty for given d.

  43. K(n,d) problem • K(n,d) is monotonic in n in some intervals of d values • K(n,d) problem is equivalent to N(d,k) in those intervals • N(d,k)  K(n,d)  D(n,k) For directed graphs, are these three problems in fact all equivalent?

More Related