1 / 25

Validation of the IPSL models used for Mediterranean climate studies

Validation of the IPSL models used for Mediterranean climate studies. Laurent Li Laboratoire de M é téorologie Dynamique ( LMD ) Institut Pierre-Simon Laplace ( IPSL ) CNRS / UPMC , Paris, France . Mediterranean climate modelling workshop, Trieste, 13-15 Oct 2008.

king
Télécharger la présentation

Validation of the IPSL models used for Mediterranean climate studies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Validation of the IPSL models used for Mediterranean climate studies Laurent Li Laboratoire de Météorologie Dynamique (LMD) Institut Pierre-Simon Laplace (IPSL) CNRS/UPMC, Paris, France Mediterranean climate modelling workshop, Trieste, 13-15 Oct 2008

  2. IPSL: a federation of 5 laboratories (700 persons) And several institutions Who we are IPSL/LMD

  3. Continents Continents Océan Océan Atmosphère Atmosphère ORCHIDEE LMDz ORCALIM Circulation Océanique Circulation Océanique Circulation Circulation Surface continentale Surface continentale Surface continentale Glace de mer Glace de mer atmosphérique atmosphérique Sol et végétation Sol et végétation Physique Physique STOMATE PISCES Biogéochimie Biogéochimie et continentale Biologie marine C0 Carbone Carbone Carbone 2 INCA Chimie DMS CH4, COV Gaz Chimie Aérosols & Nutritifs Aérosols IPSL Earth system model ORCHIDEE ORCHIDEE LMDz LMDz ORCALIM ORCALIM Circulation Océanique Circulation Glace de mer atmosphérique Sol et végétation Physique STOMATE STOMATE PISCES PISCES Biogéochimie Biogéochimie Biogéochimie Biogéochimie et et continentale continentale Biologie marine Biologie marine C0 C0 Carbone Carbone Carbone Carbone Carbone Carbone 2 2 INCA INCA Chimie Chimie DMS DMS CH4, COV CH4, COV Gaz Gaz Chimie Chimie Aérosols Aérosols & & Nutritifs Nutritifs Aérosols

  4. The IPSL-CM4 climate model • Atmosphere: LMDZ-4 • Land: ORCHIDEE • Ocean: ORCA • Sea-ice: LIM • Coupler: OASIS-3 Medium resolution: LMDZ 96x71x19 - ORCALIM : 2°

  5. LMDZ-Mediterranean model • LMDZ-Med is a global atmospheric GCM with variable grid and a zoom over the Mediterranean basin. Local resolution: 30 km. • It is run as a regional climate model, with nudging conditions (every 6 hours) from a global model (LMDZ-g, ERA40, IPCC, etc.) at low resolution outside the zoom. The model is free to have its own behaviours inside the zoom.

  6. IPSL CNRM GFDL Middle of the 21st century dT End of the 21st century Middle of the 21st century dP End of the 21st century IPCC-A2 scenarios regionally-enhanced with LMDZ-Med

  7. Changes (2070/2099 minus present) of seasonal extreme precipitations (30-year return values, from GEV distribution). Units: mm/day

  8. Two-way (self-) nesting between LMDZ-regional and LMDZ-global Global Regional

  9. Global oceanic model (ORCA2) Global Med Sea oceanic model (MED8) Regional Schematic of the quartriple coupling in IPSL

  10. Jan Apr SST from coupled model (MED8-LMDZr) Oct Jul

  11. Jan Apr SST from coupled model (MED8-LMDZr-LMDZg) Oct Jul

  12. Jan Apr Climatological SST (AMIP) Jul Oct

  13. Simulations planned in CIRCE • Regional O-A coupled model (MED8 + LMDZr) used for the scenario A1B from 1951 to 2050 (either IPSL or MPI-M global inputs). • Quartriple coupled model (MED8 + LMDZr + LMDZg + ORCA2) used for the scenario A1B from 1951 to 2050.

  14. An example of the two-way nesting atmospheric system • Two configurations: • LMDZ-regional forced by prescribed lateral boundary conditions; • Two-way nesting system between LMDZ-regional and LMDZ-global. • Two experiments (10 years for each simulation): • ObsVeg: Observed Vegetation of present day, • NatVeg: Natural vegetation in the Mediterranean basin – idealized situation without any anthropogenic land use (statistical model).

  15. Difference (NatVeg – ObsVeg) Precipitation T2m 2-way 1-way Precipitation T2m

  16. Difference (NatVeg – ObsVeg) Precipitation T2m Regional Global Precipitation T2m

  17. An example of LMDZr and LMDZg two-way nesting system for climate change scenario(Yangtze River Basin)

  18. Annual-mean rainfall (mm/d) (top), and its future variation (bottom: 2050-2000) LMDZ-global LMDZ-regional LMDZ-sn

  19. An example of LMDZr coupled to a 50-m constant-depth slab model of the Med Sea • This study is designed to investigate how large-scale synoptic processes exert their influences on the Mediterranean regional climate. • Some synoptic perturbations are artificially filtred out from the lateral boundary conditions of the LMDZ-mediterranean model.

  20. Experimental design schematic CTRL NoSynExtra climatological BC 6-hr varying BC 6-hr varying BC NoSyn NoSynTropi 6-hr varying BC climatological BC climatological BC

  21. CTRL NoSynExtra - CTRL NoSyn - CTRL NoSynTropi - CTRL January 2-m temperature (K)

  22. CTRL NoSynExtra - CTRL NoSyn - CTRL NoSynTropi - CTRL January precipitation (mm/day)

  23. 500 mb 300 mb Geopotential (NoSynExtra – CTRL) 850 mb 1000 mb

  24. Suppression of extratropical synoptic perturbations makes a negative-phase NAO situation, i.e. more precipitation and warmer temperature in the south, but reverse in the north. • Suppression of tropical synoptic perturbations makes a more uniform cooling and drying (but weak) in the domain.

  25. L.F. Richardson’s view of numerical weather prediction (1920s) (painting: François Schuiten, 2000) Perspectives • more resolution at regional scale • more interactivity in the system

More Related