80 likes | 215 Vues
This document presents the preliminary design review of heating calculations for carbon wire of 0.32 mm diameter utilized in High Energy Beam Transport (HEBT) and Ring-To-Transfer Beam (RTBT) systems. It details beam parameters, including current, size, and power deposition calculations for both 1 MW and 2 MW scenarios. The analysis includes heating efficiency, maximum wire temperatures, and governing equations essential for understanding thermal characteristics during operation. The study aims to ensure optimal performance and safety in wire heating applications in accelerator systems.
E N D
SNS Wire Scanner Preliminary Design Review Heating Calculations By C.J. Liaw, BNL July 24, 2002
Wire Heating in the HEBT Carbon wire size: 32 mm dia. Beam parameters: *1 GeV H- beam, Gaussian Distributed *1 MW~ 2 MW, 60 Hz, 1 ms long * Beam current, I = 16 ~ 32 mA over a pulse Min. beam size: 1.4 mm x 1.4 mm ( sx x sy) Mean wire thk.:x= pd/4 =.0025 [cm] Power deposition: P= [(1/r dE/dx)p+ 2*(1/r dE/dx)e] rx* Imax/2psxsy [W/m2] Heating efficiency: h =.82
Wire Heating in the Ring Carbon wire size: 32 mm dia. Beam parameters: *1 GeV, 1 ~ 2 MW, 60 Hz proton beam *Injected 1000 bunches in 1 ms before extraction * Beam current, I = from 0 to 16 A in 1 ms (1 MW case) = from 0 to 32 A in 1 ms (2 MW case) Eff. beam size: A=6.45 x 10-6+3.09 *t [m2], where t =time [sec] Mean wire thk.:x= pd/4 =.0025 [cm] Power deposition: P= (1/r dE/dx)*rx* (Imax*t/1x10-3)/A = 1.27 x 108(t/A) [W/m2] (for 1 MW case) = 2.54 x 108(t/A) [W/m2] (for 2 MW case) Heating efficiency: h =.82
Wire Heating in the RTBT Carbon wire size: 32 mm dia. Beam parameters: *1 GeV proton beam, quasi-uniform distributed *1~ 2 MW, 60 Hz, 695 ns long * Ave. beam current, I = 23 A over a pulse (1 MW case) = 46 A over a pulse (2 MW case) * Max. beam current, Imax = I *1.25 Min. beam size: 56 mm x 68 mm ( H x V) Mean wire thk.:x= pd/4 =.0025 [cm] Power deposition: P= (1/r dE/dx)prx* Imax/ (H*V) [W/m2] Heating efficiency: h =.82
Governing Equation dT/dt = 4(rpdc)(Ph-pse(T4-T04)) where T = wire temperature [K] To = beam pipe temperature = 297 [K] d = diameter of the wire [m] t = time [sec] h= heating efficiency s = Stefan Boltzmann constant = 5.67 x 10-8 [W/m2K4] r = density =2000 kg/m3 e= emissivity =0.8
Maximum Wire temperature in the HEBT, the Ring, and the RTBT (One MW Case)
Maximum Wire temperature in the HEBT, the Ring, and the RTBT (Two MW Case)