1 / 68

Spring 2014 Program Analysis and Verification Lecture 8: Static Analysis II

Spring 2014 Program Analysis and Verification Lecture 8: Static Analysis II. Roman Manevich Ben-Gurion University. Syllabus. Previously. Static Analysis by example Simple Available Expressions analysis Abstract transformer for assignments Three-address code

kirby
Télécharger la présentation

Spring 2014 Program Analysis and Verification Lecture 8: Static Analysis II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spring 2014Program Analysis and Verification Lecture 8: Static Analysis II Roman Manevich Ben-Gurion University

  2. Syllabus

  3. Previously • Static Analysis by example • Simple Available Expressions analysis • Abstract transformer for assignments • Three-address code • Processing serial composition • Processing conditions • Processing loops

  4. Defining an SAV abstract transformer { y=z+w} x:=a { y=z+w } { y=x+w} x:=a { } { y=w+x} x:=a { } {} x:=  { x= } { x=} x:=a { } [kill-rhs-1] [kill-rhs-2] [kill-lhs] [preserve] [gen]  Is either a variable v or an addition expression v+w Goal: define a function FSAV[x:=a] :    s.t.if FSAV[x:=a](D) = D’then sp(x := a, Conj(D))  Conj(D’) Idea: define rules for individual factsand generalize to sets of facts by the conjunction rule

  5. Defining a semantic reduction • Idea: make as many implicit facts explicit by • Using symmetry and transitivity of equality • Commutativity of addition • Meaning of equality – can substitute equal variables • For an SAV-predicate P=Conj(D) defineExplicate(D) = minimal set D* such that: • D D* • x=y  D* implies y=x  D* • x=y  D*y=z  D* implies x=z  D* • x=y+z  D* implies x=z+y  D* • x=y  D* and x=z+w  D* implies y=z+w D* • x=y  D* and z=x+w  D* implies z=y+w D* • x=z+w  D* and y=z+w  D* implies x=y  D* • Notice that Explicate(D)  D • Explicate is a special case of a semantic reduction

  6. Annotating assignments Define:F*[x:=aexpr] = Explicate  FSAV[x:=aexpr] Annotate(P, x:=aexpr) = {P} x:=aexprF*[x:=aexpr](P)

  7. Annotating composition Annotate(P, S1; S2) = let Annotate(P, S1) be {P} A1 {Q1} let Annotate(Q1, S2) be {Q1} A2 {Q2} return {P} A1; {Q1} A2 {Q2}

  8. Simplifying conditions • Extend While with • Non-determinism (or) and • An assume statement assumeb, s sossif B b s = tt • Now, the following two statements are equivalent • if bthenS1elseS2 • (assumeb; S1) or (assumeb; S2)

  9. assume transformer Define (bexpr) = if bexpr is factoid {bexpr}else {} Define F[assumebexpr](D) = D  (bexpr) Can sharpenF*[assumebexpr] = Explicate FSAV[assumebexpr]

  10. Annotating conditions letPt = F*[assumebexpr]P letPf = F*[assumebexpr]P let Annotate(Pt, S1) be {Pt} A1 {Q1} let Annotate(Pf, S2) be {Pf} A2 {Q2} return {P}ifbexprthen{Pt} A1 {Q1} else{Pf} A2 {Q2}{Q1 Q2}

  11. k-loop unrolling { y=x+a, y=a+x, w=d, d=w } if (x  z) x := x + 1 y := x + a d := x + aQ1 = { y=x+a, y=a+x } { P }Inv = { N }while (x  z) do x := x + 1 y := x + a d := x + a { P }if (x  z) x := x + 1 y := x + a d := x + aQ1 = { y=x+a, y=a+x } if (x  z) x := x + 1 y := x + a d := x + aQ2 = { y=x+a, y=a+x } The following must hold:P  NQ1 NQ2 N…Qk N… Observation 1: No need to explicitly unroll loop – we can reuse postcondition from unrolling k-1 for k We can compute the following sequence:N0 = PN1 = N1 Q1N2 = N1 Q2…Nk = Nk-1 Qk …

  12. Annotating loops Annotate(P, whilebexprdo S) = Initialize N:= Nc := Prepeat let Annotate(P, if b then S else skip) be {Nc} if bexpr then S else skip {N}Nc := Nc Nuntil N= Nc return {P} INV= NwhilebexprdoF[assumebexpr](N)Annotate(F[assumebexpr](N),S)F[assumebexpr](N)

  13. Annotating programs Annotate(P, S) = caseS is x:=aexpr return {P} x:=aexpr {F*[x:=aexpr] P} caseSisS1; S2 let Annotate(P, S1) be {P} A1 {Q1} let Annotate(Q1, S2) be {Q1} A2 {Q2} return {P} A1; {Q1} A2 {Q2} caseSisifbexprthenS1elseS2 letPt = F[assumebexpr]P letPf = F[assumebexpr]P let Annotate(Pt, S1) be {Pt} A1 {Q1} let Annotate(Pf, S2) be {Pf} A2 {Q2} return {P} ifbexprthen {Pt} A1 {Q1}else {Pf} A2 {Q2} {Q1 Q2} caseSiswhilebexprdoS N:= Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N}Nc := Nc N untilN= Nc return{P} INV= {N} whilebexprdo {Pt} Abody {F[assumebexpr](N)}

  14. Today • Another static analysis example – constant propagation • Basic concepts in static analysis • Control flow graphs • Equation systems • Collecting semantics • (Trace semantics)

  15. Constant propagation

  16. Second static analysis example simplifies constant expressions constantfolding { x=c } y := aexpr y := eval(aexpr[c/x]) • Optimization: constant folding • Example: x:=7; y:=x*9transformed to: x:=7; y:=7*9and then to: x:=7; y:=63 • Analysis: constant propagation (CP) • Infers facts of the form x=c

  17. Plan Define domain – set of allowed assertions Handle assignments Handle composition Handle conditions Handle loops

  18. Constant propagationdomain

  19. CP semantic domain ?

  20. CP semantic domain • Define CP-factoids: = { x = c | x Var, c  Z } • How many factoids are there? • Define predicates as  = 2 • How many predicates are there? • Do all predicates make sense? (x=5)  (x=7) • Treat conjunctive formulas as sets of factoids {x=5, y=7} ~ (x=5)  (y=7)

  21. Handling assignments

  22. CP abstract transformer ? Goal: define a functionFCP[x:=aexpr] :    such thatif FCP[x:=aexpr] P = P’then sp(x:=aexpr, P)  P’

  23. CP abstract transformer { x=c} x:=aexpr { } [kill] {} x:=c { x=c } [gen-1] { y=c1, z=c2} x:=y op z{ x=c} and c=c1op c2 [gen-2] { y=c } x:=aexpr{ y=c } [preserve] Goal: define a functionFCP[x:=aexpr] :    such thatif FCP[x:=aexpr] P = P’then sp(x:=aexpr, P)  P’

  24. Gen-kill formulation of transformers • Suited for analysis propagating sets of factoids • Available expressions, • Constant propagation, etc. • For each statement, define a set of killed factoids and a set of generated factoids F[S] P = (P \ kill(S))  gen(S) • FCP[x:=aexpr] P = (P \ {x=c})aexpr is not a constant • FCP[x:=k] P = (P \ {x=c})  {x=k} • Used in dataflow analysis – a special case of abstract interpretation

  25. Handling composition

  26. Does this still work? Annotate(P, S1; S2) = let Annotate(P, S1) be {P} A1 {Q1} let Annotate(Q1, S2) be {Q1} A2 {Q2} return {P} A1; {Q1} A2 {Q2}

  27. Handling conditions

  28. Handling conditional expressions We want to soundly approximate D  bexprand D  bexprin  Define (bexpr) = if bexpr is CP-factoid {bexpr}else {} Define F[assumebexpr](D) = D  (bexpr)

  29. Does this still work? How do we define join for CP? letPt = F[assumebexpr]P letPf = F[assumebexpr]P let Annotate(Pt, S1) be {Pt} A1 {Q1} let Annotate(Pf, S2) be {Pf} A2 {Q2} return {P}ifbexprthen{Pt} A1 {Q1} else{Pf} A2 {Q2}{Q1 Q2}

  30. Join example {x=5, y=7}  {x=3, y=7, z=9} =

  31. Handling loops

  32. Does this still work? Annotate(P, whilebexprdoS) = N:= Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N}Nc := Nc N untilN= Nc return{P} INV= {N} whilebexprdo {Pt} Abody {F[assumebexpr](N)} What about correctness? What about termination?

  33. Does this still work? Annotate(P, whilebexprdoS) = N:= Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N}Nc := Nc N untilN= Nc return{P} INV= {N} whilebexprdo {Pt} Abody {F[assumebexpr](N)} • What about correctness? • If loop terminates then is Na loop invariant? • What about termination?

  34. A termination principle • g : X X is a function • How can we determine whether the sequencex0, x1 = g(x0), …, xk+1=g(xk),… stabilizes? • Technique: • Find ranking functionrank : X  N(that is show that rank(x)  0 for all x) • Show that if xg(x)then rank(g(x)) < rank(x)

  35. Rank function for available expressions rank(P) = ?

  36. Rank function for available expressions Annotate(P, whilebexprdoS) = N:= Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N}Nc := Nc N untilN= Nc return{P} INV= {N} whilebexprdo {Pt} Abody {F[assumebexpr](N)} rank(P) = |P|number of factoids Prove that either Nc =Nc Nor rank(Nc N) <? rank(Nc)

  37. Rank function for constant propagation Annotate(P, whilebexprdoS) = N:= Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N}Nc := Nc N untilN= Nc return{P} INV= {N} whilebexprdo {Pt} Abody {F[assumebexpr](N)} rank(P) = ? Prove that either Nc =Nc Nor rank(Nc) >? rank(Nc N)

  38. Rank function for constant propagation Annotate(P, whilebexprdoS) = N’ := Nc := P // Initialize repeatletPt = F[assumebexpr] Nc let Annotate(Pt, S) be {Nc} Abody{N’}Nc := Nc N’ untilN’ = Nc return{P} INV= {N’} whilebexprdo {Pt} Abody {F[assumebexpr](N)} rank(P) = |P|number of factoids Prove that either Nc =Nc N’or rank(Nc) >? rank(Nc N’)

  39. Generalizing AvailableExpressions ConstantPropagation By NMZ (Photoshop) [CC0], via Wikimedia Commons AbstractInterpretation 1

  40. Towards a recipe for static analysis • Two static analyses • Available Expressions (extended with equalities) • Constant Propagation • Semantic domain – a family of formulas • Join operator approximates pairs of formulas • Abstract transformers for basic statements • Assignments • assume statements • Initial precondition

  41. Controlflowgraphs

  42. A technical issue • Unrolling loops is quite inconvenient and inefficient (but we can avoid it as we just saw) • How do we handle more complex control-flow constructs, e.g., goto , break, exceptions…? • The problem: non-inductive control flow constructs • Solution: model control-flow by labels and goto statements • Would like a dedicated data structure to explicitly encode control flow in support of the analysis • Solution:control-flow graphs (CFGs)

  43. Modeling control flow with labels label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b while (x  z) do x := x + 1 y := x + a d := x + a a := b

  44. Control-flow graph example line number label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b 1 2 3 label0: 4 1 5 6 2 if x  z 7 label1: x := x + 1 8 7 3 a := b y := x + a 8 4 d := x + a 5 goto label0 6

  45. Control-flow graph example label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b 1 entry 2 3 label0: 4 1 5 6 2 if x  z 7 label1: x := x + 1 8 7 3 a := b y := x + a 8 4 d := x + a exit 5 goto label0 6

  46. Control-flow graph • Node are statements or labels • Special nodes for entry/exit • A edge from node v to node w means that after executing the statement of v control passes to w • Conditions represented by splits and join node • Loops create cycles • Can be generated from abstract syntax tree in linear time • Automatically taken care of by the front-end • Usage: store analysis results (assertions) in CFG nodes

  47. Control-flow graph example label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b 1 entry 2 3 label0: 4 1 5 6 2 if x  z 7 label1: x := x + 1 8 7 3 a := b y := x + a 8 4 d := x + a exit 5 goto label0 6

  48. Eliminating labels We can use edges to point to the nodes following labels and remove all label nodes (other than entry/exit)

  49. Control-flow graph example label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b 1 entry 2 3 label0: 4 1 5 6 2 if x  z 7 label1: x := x + 1 8 7 3 a := b y := x + a 8 4 d := x + a exit 5 goto label0 6

  50. Control-flow graph example label0: if x  z goto label1 x := x + 1 y := x + a d := x + agoto label0label1: a := b 1 entry 2 3 4 5 6 2 if x  z 7 x := x + 1 8 3 a := b y := x + a 8 4 d := x + a exit 5

More Related