1 / 14

geometria analitica computer algebra

geometria analitica computer algebra. &. Franco Cocca novembre 2004. Il punto. In Derive (c) il punto di coordinate (x,y) si definisce con la sintassi: [x, y] Per estrarre l’ascissa di un generico punto P P sub 1 e l’ordinata P sub 2. punto medio.

kiri
Télécharger la présentation

geometria analitica computer algebra

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. geometria analiticacomputer algebra & Franco Coccanovembre 2004

  2. Il punto In Derive (c) il punto di coordinate (x,y) si definisce con la sintassi: [x, y] Per estrarre l’ascissa di un generico punto P P sub 1 e l’ordinata P sub 2

  3. punto medio Il calcolo del punto medio fra due punti noti P e Q si imposta con (P+Q)/2 Il simmetrico di un punto P rispetto al punto C è 2C - P

  4. distanza punto - punto La distanza fra due punti P e Q si calcolerebbe con ((Q sub 1-P sub 1)^2+(Q sub 2 - P sub 2)^2)^(1/2) anche se Derive consente la forma vettoriale più semplice |P-Q|

  5. funzioni Si possono definire per comodità le funzioni ics(P):= P sub 1 ips(P):= P sub 2 distanza(A,B):=|A-B| medio(A,B):=(A+B)/2

  6. funzioni Una funzione particolare che permette di ridurre ai minimi termini una equazione è data da riduci(esp):=factors(numerator(factor(esp))) sub 1 sub 1 Pertanto nella definizione della retta passante per due punti retta(A, B):=Prog( r_:=(x-ics(A))(ips(A)-ips(B))-(y-ips(A))(ics(A)-ics(B)), riduci(r_) =0)

  7. alcuni esempi:

  8. retta parallela parallela(r,P):=Prog( s_:=lhs(r)-rhs(r), cc_:=subst(s_,[x,y],[0,0]), aa_:=subst(s_,[x,y],[1,0])-cc_, bb_:=subst(s_,[x,y],[0,1])-cc_, rr_:=aa_*x+bb_*y-(aa_* P sub 1+bb_* P sub 2), riduci(rr_)=0 )

  9. retta perpendicolare perpendicolare(r,P):= Prog( s_:=lhs(r)-rhs(r), cc_:=subst(s_,[x,y],[0,0]), aa_:=subst(s_,[x,y],[1,0])-cc_, bb_:=subst(s_,[x,y],[0,1])-cc_, rr_:=bb_*x-aa_*y-(bb_* P sub 1-aa_* P sub 2), riduci(rr_)=0 )

  10. intersezione intersezione(r,s):=solutions([r,s],[x,y]) sub 1

  11. ortocentro Per definire l’ortocentro di un triangolo di vertici A, B e C ortocentro(A,B,C):=intersezione(perpendicolare(retta(A,B),C), perpendicolare(retta(B,C),A) )

  12. circocentro è il punto di intersezione degli assi. Definiamo asse(A,B):=perpendicolare(retta(A,B),medio(A,B)) circocentro(A,B,C):=intersezione(asse(A,B), asse(B,C))

  13. distanza punto retta Per calcolare la distanza fra un punto P e la retta r distanzaPr(P,r):= distanza(P, intersezione(r, perpendicolare(r,P)))

  14. perimetro e area del triangolo Per calcolare il perimetro e l’area di un triangolo di vertici A, B e C perimetro(A,B,C):= distanza(A,B)+distanza(B,C)+distanza(A,C) area(A,B,C):= 1/2 distanza(A,C) distanzaPr(B,retta(A,C))

More Related