1 / 15

Job s Method of Continuous Variation

Outline. PurposeCoordination ComplexesReactionDetermining ?n"Graph of Abs vs. Mole Fraction of SCN-ProcedureSafety ConcernsWasteWhat to turn inExperiment 3 reminder. Purpose . Students will become familiar with Job's method of Continuous variation, which is a technique for determining the empirical formula of a coordination complex. .

kohana
Télécharger la présentation

Job s Method of Continuous Variation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Jobs Method of Continuous Variation Experiment 2

    2. Outline Purpose Coordination Complexes Reaction Determining n Graph of Abs vs. Mole Fraction of SCN- Procedure Safety Concerns Waste What to turn in Experiment 3 reminder

    3. Purpose Students will become familiar with Jobs method of Continuous variation, which is a technique for determining the empirical formula of a coordination complex.

    4. Coordination Complexes A coordination complex consists of a central metal ion bound by surrounding ligands. Transition metals are positively charged and will readily accept electrons. Ligand molecules contain atoms with non-bonding electrons, which can be donated to the electron deficient metal ion in order to form a complex ion. This can be viewed as Lewis acid base chemistry because of the electron involvement.

    5. Reaction Fe3+ + nSCN- [Fe(SCN)n]3-n iron (III) thiocyanate iron (III) thiocyanate metal ion ligand complex ion We will experimentally determine the value of n.

    6. Related to the value of n: The coordination number of a metal ion is the number of bonds it can form with ligands typically 1, 2, 3, 4, 5, or 6. The coordination number of Fe3+ is 6. Iron (III) can therefore bond to as many as 6 monodentate ligands or three bidentate ligands.

    7. XLigand vs. XSCN- For the purpose of this lab: Xligand refers to the mole fraction of SCN- in each solution (of SCN- + Fe3+). XSCN- refers to the mole fraction of SCN- in the compound [Fe(SCN)n]+3-n.

    8. To determine n: We will prepare a series of solutions, each with a different mole fraction of ligand: The absorbance of the complex at ? = 470 nm is directly proportional to the concentration of the complex.

    9. Abs vs. Mole Fraction of SCN-

    10. Graph The point of intersection of the two linear extrapolations corresponds to the mole fraction of SCN- in the complex ion. Remember to limit your graph slopes to the appropriate significant figures and y-intercepts to the appropriate digits of precision before attempting any calculations. Solving for the intersection we are solving for x where: y1 = y2 m1x + b1 = m2x + b2 b1 b2 = m2x m1x = x (m2 m1)

    11. Graph x = Then, XFe3+ = 1 XSCN- And, n =

    12. Procedure Prepare your solutions following the directions in the manual. Measure the absorbance of each solution at a wavelength of 470 nm. Apply Jobs Method to your data to determine the empirical formula of your complex.

    13. Safety Concerns Reagents: Ferric Nitrate (Fe(NO3)3 HNO3 (1.0N) Potassium Thiocyanate (0.1N) Sulfamic Acid Eye Contact: Blurry vision. Severe irritation, redness, pain, burns, conjunctivitis and permanent corneal damage. Skin Contact: Severe irritation, burns, redness, pain, stains and ulcers. Inhalation: Destructive to mucosa and upper respiratory tract. May cause burning, coughing, choking, wheezing, laryngitis, shortness of breath, headache, nausea, vomiting, methemoglobinemia, cyanosis, convulsions, tachycardia, dyspnea, pneumonia, pulmonary edema, asphyxia, chemical pneumonitis and death. Ingestion: Pain and burns of the mouth, throat, esophagus and gastrointestinal tract. Gastrointestinal irritation with nausea, vomiting, diarrhea, methemoglobinemia, cyanosis, convulsions, systemic toxic effects on the heart, liver, and kidneys and death.

    14. Waste Conserve chemicals and distilled water. If you spill, clean it up. All solutions in this experiment are acidic. Dispose of all excess and waste solutions in provided acid waste containers in the fume hood(s). Please DO NOT unplug the hotplates!

    15. What to turn in: When you are finished, make sure your report (p. 111) is complete, then staple the following together: Report One spreadsheet Two graphs Remember to complete and turn in your post-lab questions by the deadline.

    16. Experiment 3 Read the required reading sections in your textbook as you prepare for next weeks experiment. Read the write-up for Experiment 3 and complete and submit the pre-lab questions. If your class is required to complete quizzes in Blackboard, remember to do so.

More Related