1 / 51

Muon EDM in Storage Rings: Probing the Second Generation.

Fundamental Interactions Trento/Italy, 21-25 June 2004. Muon EDM in Storage Rings: Probing the Second Generation. Yannis K. Semertzidis Brookhaven National Laboratory. EDM Experimental Techniques EDMs in Storage Rings. á la Fortson. d. ~.

lainey
Télécharger la présentation

Muon EDM in Storage Rings: Probing the Second Generation.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fundamental Interactions Trento/Italy, 21-25 June 2004 MuonEDM in Storage Rings: Probing the Second Generation. Yannis K. Semertzidis Brookhaven National Laboratory • EDM Experimental Techniques • EDMs in Storage Rings

  2. ála Fortson d ~ Muon EDM in SM <10-38e cm, I. Khriplovich.

  3. E Small Signal + Compare the Zeeman Frequencies When E-field is Flipped: - Usual Experimental Method

  4. Neutron EDM Vs Year

  5. Electron EDM 10-20 Cs 10-22 Cs 10-24 Xe* Hg Experimental Limit on de (e .cm) Cs 10-26 Tl Tl Tl ?? 10-28 10-30 1960 1970 1980 1990 2000 2010

  6. Current Atomic EDM Limits • Paramagnetic Atoms, 205Tl: electron |de| < 1.610-27e·cm (90%CL) PRL 88, 071805 (2002) • Diamagnetic Atoms, 199Hg Nucleus: |d(199Hg)| < 2.110-28e·cm (95%CL) PRL 86, 2505 (2001)

  7. Electric Dipole Moments in Storage Rings e.g. 1T corresponds to 300 MV/m!

  8. Spin Precession in g-2 Ring(Top View) Momentum vector m Spin vector

  9. Spin Precession in g-2 Ring(Top View) Momentum vector m Spin vector

  10. Indirect Muon EDM limit from the g-2 Experiment z y s β x B Ron McNabb’s Thesis 2003:

  11. Look for g-2 Vertical Oscillation

  12. Canceling g-2 with a Radial E-field z B E y s β x

  13. Radial E-field to Cancel/Control the g-2 Precession • Radial E-Field: The method works well for particles with small anomalous magnetic moment a, e.g. Muons (a = 0.0011), Deuterons (a = -0.143), etc.

  14. Effect of E-Field to g-2 Precession In a B-Field In an E-Field

  15. Momentum vector Spin vector Spin Precession in g-2 Ring(Top View) m

  16. Momentum vector Spin vector Spin Precession in EDM Ring(Top View) m

  17. The muon spin precesses vertically (Side View)

  18. Equivalent E-Field:

  19. (U-D)/(U+D) vs Time

  20. Sources of Muon Systematic Errors: • Out of Plane Electric Field (Ev) • Geometrical Phases (2nd Order Effects) • Detector Related Effects • Beam Motion During Storage

  21. Effect of Vertical Component of E

  22. E E CW vs CCW B B E-Field does NOT flip sign!

  23. Effect of Vertical Component of E • Clock Wise and Counter-Clock Wise Injection: Background: Same Sign Signal: Opposite Sign • Protons β=0.15, γ=1.01, ω100105 θE rad/s • Deuterons β=0.2, γ=1.02, ω  10105 θE rad/s • Muons β=0.98, γ=5, ω  2105 θE rad/s • Other Diagnostics Include Injecting Forward vs Backward Polarized Beams as well as Radially Pol.

  24. Ev Issues: • Temporal Changes (CW and CCW every 10s) • Changes Correlated with B-Field Reversals (Fabry-Perot Resonator) • E-Field Multipoles Couple to Beam Moments (Pickup Electrodes; Beam Moment Manipulation)

  25. Tilt-meter Measurements at the g-2 Ring with 1nrad Resolution

  26. Spin Related Systematic Error Symmetries:(+) Same as EDM; (-) is opposite

  27. Two Major Ideas: • Radial E-field to Cancel the g-2 Precession • Injecting CW and CCW • Sensitivity: 10-24 e·cm statistical (1 yr, 0.75MW) • Sensitivity: 10-27 e·cm systematic error • Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC.

  28. Muon EDM Letter of Intent to J-PARC/Japan, 2003 † † # • †Spokesperson • # Resident Spokesperson

  29. Parameter Values of Muon EDM Experiment • Radial E-Field: • E=2MV/m • Dipole B-field:B~0.25T, R~10m • Muon Momentum:

  30. J-PARC Parameters

  31. Statistical Error (Muon Case): : 11s. Muon Lifetime A : 0.3 Vertical Asymmetry NTot P2: 51016 The beam intensity at J-PARC per year. ER : 2MV/m Radial electric field value per year

  32. SUSY: EDM, MDM and Transition Moments are in Same Matrix

  33. Expected Muon EDM Value from a

  34. Predictions in Specific Models 50 effect at 10-24 ecm Exp. Sensitivity! The predicted value for the electron is 10 times less than the current experimental limit.

  35. Linear Mass Scaling of Lepton EDM is Avoided in Specific Models • A. Pilaftsis, Nucl. Phys. B644 (2002) 263 • T. Feng et al., hep-ph/0305290

  36. g-2 Values • Electron 0.0016 done • Muon 0.0016 doing • Proton 1.8 ------ • Deuteron -0.15 OK!

  37. Deuteron Coherence Time • E, B field stability • Multipoles of E, B fields • Vertical (Pitch) and Horizontal Oscillations • Finite Momentum Acceptance ΔP/P At this time we believe we can do p 10s

  38. Deuteron EDM Signal: • Radial E-Field: e.g. for ER = 3.5MV/m, d = 10-27e·cm; ωd = 0.3µrad/s

  39. Enhancement of EDM Signalby Canceling the g-2 Precession • Edm Signal Rate: 0.3rad/s • With Cancellation:a 0.1 rad/s; Max vertical spin amplitude within 10s:  1rad • Without Cancellation:a 106 rad/s; Max vertical spin amplitude within 10s: 0.1prad

  40. Deuteron Statistical Error (200MeV): p : 10s. Polarization Lifetime (Coherence Time) A : 0.5 The left/right asymmetry observed by the polarimeter P : 0.55. The beam polarization Nc: 41011d/cycle. The total number of stored particles per cycle TTot: 107s. Total running time per year f : 0.01 Useful event rate fraction ER : 3.5MV/m. Radial electric field per year

  41. Deuteron EDM Signal is Strong: • Radial E-field Controls g-2 Precession Rate • Intense Polarized Deuteron Beams • Long Spin Coherence Time 10s • Polarimeters: Large Left/Right Asymmetry

  42. Deuteron EDM Systematics: • EV: CW vs CCW Injection • Geometrical Phases: Local Cancellation of g-2 and CW vs CCW Injection • Preliminary Flattening of Ring to 10-9rad: Beam Dynamics Resonance and Beam Position Monitors. The Spin Itself is Sensitive… • Detector Related Effects: CW vs CCW Injection, Spin Flip before Injection • Leakage Current is a Second Order Effect!

  43. Deuterons to Flatten EV for the Muon EDM Experiment • In one single injection deuterons can probe Ev to better than a factor of ten than needed for the muon. • Inject at different radii and heights to map and shim away Ev(x,y).

  44. Possible Further Improvement on the Muon EDM by a factor of ten: • Higher ER Fields: 8MV/m with gas to slow down free electrons. • 10 Muon Intensities under Study

  45. Summary Electric Dipole Moment Searches: • Exciting Physics, Forefront of SUSY/Beyond SM Search. • Revolutionary New Way of Probing EDMs, Muon and Deuteron Cases-Very Exciting.

  46. E-field Stability: Major Breakthrough Idea by Neil Shafer-Ray E-field Stability of Order 10-8 to 10-9

  47. Parameter Values of Muon EDM Experiment • Radial E-Field: • E=2MV/m • Dipole B-field:B ~ 0.25T , R ~ 10m • Muon Momentum: • Need NP2=1016 for 10-24e.cm. Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC, <one year of running. • F. Farley et al., hep-ex/0307006

More Related