1 / 33

Seminar outline

Seminar outline. Introduction (DAPNIA,SPhN,…) Experimental program with SPIRAL beams: The structure of 27 Ne studied at GANIL and MSU. Shape coexistence in 74 Kr. The European strategy in the domain of radioactive beam facilities. The SPIRAL2 project. DAPNIA.

lavada
Télécharger la présentation

Seminar outline

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Seminar outline Introduction (DAPNIA,SPhN,…) Experimental program with SPIRAL beams: The structure of 27Ne studied at GANIL and MSU. Shape coexistence in 74Kr. The European strategy in the domain of radioactive beam facilities. The SPIRAL2 project.

  2. DAPNIA Laboratoire de Recherche sur les lois fondamentales de l’Univers Laboratory of research into the fundamental laws of the Universe

  3. ORGANIGRAMME DAPNIA Chef de Département : Jean ZINN-JUSTIN Adjoint au Chef de DépartementChristian CAVATA Adjoint au Chef de DépartementPatrice MICOLON Adjoint au Chef de DépartementPhilippe REBOURGEARD SPhNService de Physique NucléaireNicolas ALAMANOS SApService d’AstrophysiquePierre-Olivier LAGAGE SPPService de Physique des ParticulesBruno MANSOULIE SEDIService d’Electronique, des Détecteurs et d’Informatique Michel MUR SENAC Service d’Expertises Nucléaires en Assainissement et Conception François DAMOY SISService d’Ingénierie des SystèmesPierre-Yves CHAFFARD SACMService des Accélérateurs, de Cryogénie et de MagnétismeAntoine DAËL

  4. DAPNIA Budget evolution over 10 years

  5. DAPNIA Human resources Starting point in 1992

  6. SPhN 2006 Miscellaneous (4) Quark-Gluon plasma (7) Nucleon Structure (17) Physics for nuclear energy (13) Nucleus Structure (12) 52 CEA physicists 1 CNRSphysicist 11 PhD students 18 Post-docs

  7. The SPhN research themes The structure of the nucleus The quark and gluon plasma The structure of the nucleon Physics for nuclear energy

  8. Seminar outline Introduction (DAPNIA,SPhN,…) Experimental program with SPIRAL beams: The structure of 27Ne studied at GANIL and MSU. Shape coexistence in 74Kr. The European strategy in the domain of radioactive beam facilities. The SPIRAL2 project.

  9. GANIL and SPIRAL Target 36S beam 77.5 MeV/u 1KW CSS1 CSS2 26Ne beam 9.5 MeV/u 3000pps ECRIS SPIRAL CIME SPIRAL: Système de Production d’Ions Radioactifs en Ligne

  10. Heavy and super-heavy nuclei f7/2 p3/2 p3/2 f7/2 d3/2 20 16 d3/2 s1/2 s1/2 d5/2 d5/2 Shape coexistence 74Kr 76Kr Shell Structure far from stability 27Ne, N=16 Neutron halos and skins 6He 8He The experimental program with SPIRAL

  11. f7/2 p3/2 p3/2 f7/2 d3/2 20 16 d3/2 s1/2 s1/2 probe single-particle structure of N=17 isotones d5/2 d5/2 Sn Sn Sn Shell gap reduction in N=17 nuclei Negative parity states of N=17 isotones - - - - + + + + + +  Search for low-lying negative-parity states in 27Ne

  12. Cryogenic D2 target : 1.00 mm (17 mg/cm2) He cooled @ 4 K VAMOS 27Ne Spectroscopy of 27Ne at GANIL: 26Ne(d,pg)27Ne EXOGAM 26Ne SPIRAL 10 MeV/u 3000 pps April 2004

  13. Results for 27Ne Sn MSU 120KeV Sn From neutron knock-out 28Ne(9B,X)g27Ne Submitted to PLB Sn ((1,3,5)/2)- 1/2+ A. Obertelli al, PLB 633 33 (2006) existence of a low-lying negative parity state in 27Ne, which is signature of a reduced sd-fp shell gap in the N=16 neutron-rich region. And a PRL from Japan

  14. 25Ne 27Ne Out-law nuclei of the nuclear borderland 25Ne well described by conventional shell model calculations! by adding just two neutrons more, conventional shell model theory fails to reproduce the structure of 27Ne!

  15. Oblate Prolate M. Girod, CEA Bruyères-le-Châtel Shapes of atomic nuclei Quadrupole deformationof the nuclear ground states Shape coexistence predicted around 72Kr

  16. Coulomb excitation of 74Kr and 76Kr EXOGAM SPIRAL beams 76Kr 5105 pps 74Kr 104 pps 4.5 MeV/u Pb A. Gorgen et al., Acta Phys. Pol. B 36, 1281 (2005)

  17. full 2 minimization: negative matrix element (positive quadrupole moment Q0)  prolate shape 74Kr positive matrix element (negative quadrupole moment Q0)  oblate shape Sensitivity to quadrupole moments 74Kr

  18. oblate prolate GCM-HFB (SLy6) calculation M. Bender and P.-H. Heenen, priv. comm. Comparison with theory 74Kr oblate prolate experimental B(E2) values in e2fm4 • satisfying agreement for in-band and inter-band strengths • inversed ordering of prolate and oblate states

  19. VAMOS The tools MUST 8He AGATA

  20. Seminar outline Introduction (DAPNIA,SPhN,…) Experimental program with SPIRAL beams: The structure of 27Ne studied at GANIL and MSU. Shape coexistence in 74Kr. The European strategy in the domain of radioactive beam facilities. The SPIRAL2 project.

  21. The European Strategy

  22. The European landscape in 2020 GANIL/ SPIRAL Today FAIR EURISOL SPIRAL2 2010 ~2015

  23. Seminar outline Introduction (DAPNIA,SPhN,…) Experimental program with SPIRAL beams: The structure of 27Ne studied at GANIL and MSU. Shape coexistence in 74Kr. The European strategy in the domain of radioactive beam facilities. The SPIRAL2 project.

  24. SPIRAL2 LAYOUT Production building LINAG GANIL facility 200kW

  25. Existing GANIL Accelerators CIME Cyclotron Acceleration of RI Beams E < 25 AMeV, 1 - 8 AMeV for FF Direct beam line CIME-G1/G2 caves Existing GANIL Exp. Area Production Cave C converter+UCx target  1014 fissions/s Low energy RNB (DESIR) Deuteron source 5mA RFQ Stable Heavy-Ion Exp. Hall Superconducting LINAC E ≤ 14.5 AMeV for heavy Ions A/q=3 E ≤ 20 A MeV for deuterons (A/q=2 ions) E ≤ 33 MeV for protons Heavy-Ion ECR source (A/q=3), 1mA

  26. Beams with the SPIRAL2 facility Superheavies Fusion of stable nuclei Super-heavies Primary beam: deuterons heavy ions Fusion of exotic nuclei transfermiums 140Xe+136Xe ->276108 Fusion of exotic nuclei 134Sn+48Ca ->182Yb N=Z: ISOL & In-Flight Transfermiums Neutron rich exotic nuclei >1011132Sn/s Z Fusion reactions with exotic beams produced Fusion of stable nuclei ~100 100Sn/s Fission products (with converter) 9Be(n,a)6He ~1011 Direct fission products (no converter) High-intensity light RIBs N

  27. Intensity (pps) Yields after acceleration Kr isotopes a) Yield for in-flight production of fission fragments at relativistic energy

  28. Operation of GANIL with SPIRAL2 A multi-user facility Operation of the accelerators: 66 weeks today (3 beams) 120 weeks with SPIRAL 2 (5 simultaneous beams)

  29. DAPNIA contributions SPIRAL2 Cryo-modules Source D+ RFQ

  30. Equipments for SPIRAL2 MUST2 AGATA Spectrometers for high intensity beams SPIRAL2 ASIC for sciences, beam detectors, cryogenic and polarized targets

  31. Detection Q-poles Q-poles Beam line Dipole Target /Detection 50 m Q-pole triplet Target /Detection 14 m Q-pole triplet Wien Filter 3 m 3 m 6 m 1,7 m 2 m 1.1 m 6 m 1,7 m 2 m 9 m Beam line Target /Detection 33 m 2 m Spectrometers for high intensity beams • Theory plays crucial role • complements experiment • provides vision • provides deeper understanding • provides intellectual motivation • provides justification for 1M€ projects

  32. 100Sn20+ 72Kr20+ Beam Energies from CIME Isotope Maximum Energy Beam Intensity (MeV/u) (pps) 132Sn20+ 6.0 2x109 132Sn21+ 6.7 2x109 132Sn22+ 7.3 1.7x109 132Sn23+ 8.0 1.2x109 132Sn24+ 8.7 4x108 132Sn25+ 9.4 1x108 Energy range of SPIRAL2 RIB : < 60keV and 1-20 MeV/nucl.

More Related