1 / 33

Course Introduction to virtual engineering

Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics. Course Introduction to virtual engineering. Lecture and laboratory 2 . Solid modeling Boundary represented solid. László Horváth university professor. http://users.nik.uni-obuda.hu/lhorvath/.

Télécharger la présentation

Course Introduction to virtual engineering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics CourseIntroduction to virtual engineering Lecture and laboratory 2. Solid modeling Boundary represented solid László Horváth university professor http://users.nik.uni-obuda.hu/lhorvath/

  2. Ez a prezentáció szellemi tulajdon. Hallgatóim számára rendelkezésre áll. Minden más felhasználása és másolása nem megengedett! A prezentációban megjelent képernyő-felvételek a Dassault Systémes V6 PLM rendszerének, az Óbudai Egyetem Intelligens Mérnöki Rendszerek Laboratóriumában telepített installációján készültek, valóságos működő modellekről, a rendszer saját eszközeivel. CATIA V5 PLM rendszer a Dassult Systémes Inc. és a CAD-Terv Kft segítségével üzemel laboratóriumunkban LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  3. Contents Lecture Boundary representation Topological structure and rules Euler rule and its application Laboratory Creating free form and generative curves and extrusions (VE2.1) Creating translate and blending surfaces (VE2.2) Creating surface based solid and its modifications (VE2.3) LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  4. Problem G12 F2 F1 What is this? Solid body seems It consists of separated surfaces Solution: Boundary representation= topology (structure) and geometry (shape) Geometry: surfaces and intersection curves LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  5. Description of shape by its boundary It consists of six separated surfaces What is this? Its construction Solid body seems LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  6. Description of shape by its boundary Translate.2 switched to hide and the model was completed by two solids (Pad.1 és Pad. 2). What happened? LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  7. Boundary representation P = point G12 C = curve Shell Consistent (complete) L = loop, ring S = Surface Shell + material = body Body = two lumps: Boundary representation= topology (structure) and geometry (shape) Geometry: surfaces and intersection curves V V = vertex F E E = edge, coedge F = face LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  8. Topological rules Three or more edges must run into a vertex. Face must be enclosed by a closed chain of edges. Edge is included always in two loops for adjacent faces. LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  9. Euler rule and its application Leonhard Euler (1707-1783) Swiss mathematician. Euler number for boundary of body: V - E + F Euler number is a constant: V - E + F = C. For simple bodies ( no through holes or separated bodies (lumps)): Euler number = 2 Examples: V-E+F=2-3+3=2 V-E+F=8-12+6=2 V-E+F=10-15+7=2 LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  10. Description of shape by its boundary Shape modification by form feature Hole.1 acts on only solid features. What happened? LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  11. Modification of boundary by form features Form feature Shell.1 acts on both of the lumps in the PartBody. Form feature Hole.2 is after Shell.1 in the sequence. Shell.1 does not modify it. LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  12. Including surface in solid boundary Surface 4 is a NURBS, it can be modified by control points. No flat constraint! Surface 4 is extended at its edges. Form feature ThickSurface.1 is defined between Surface.4 and its offset. This is the third lump in the solid. LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  13. Modification of lumps by form feature Form feature Pad.3 is defined by closed free form curve in Plane. and appropriate surface in the boundary of form feature ThickSurface.1 . Form feature Hole.3 modify all of the lumps in the solid body PartBody. LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  14. Creating free form and generative curves and extrusions Laboratory task VE2.1 Creating free form curve by free definition of interpolated points. Studying possibilities for the definition of a point. Application of generative means at curve definition. Creating extruded surfaces in the context of the above curves LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  15. Creating free form curve and its extrusion LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  16. Creating free form curve and its extrusion Manual placing is allowed with restricted context LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  17. Creating free form curve and its extrusion LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  18. Creating points and generative curve by their interpolation LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  19. Creating points and generative curve by their interpolation LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  20. Creating extruded surface using generative curve LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  21. Creating translate and blending surfaces LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  22. Creating translate and blending surfaces LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  23. Creating translate and blending surfaces LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  24. Creating translate and blending surfaces LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  25. Creating translate and blending surfaces LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  26. Creating surface based solid and its modifications Laboratory task VE2.3 Creating base feature between blend surface defined in task VE2.2 and its offset. Modification of the solid by a prism form feature. Modification of the solid by a fillet form feature. LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  27. Creating base feature between blend surface and its ofset LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  28. Creating base feature between blend surface and its ofset LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  29. Modification of the solid by a prism form feature LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  30. Modification of the solid by a prism form feature LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  31. Modification of the solid by a prism form feature LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  32. Modification of the solid by a prism form feature LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

  33. Additional modifications for the final solid LászlóHorváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/

More Related