1 / 36

Rectangles, Rhombuses, and Squares

Kelompok 3. Rectangles, Rhombuses, and Squares. Annisa Luthfi Fadhilah Ma’ruf ; Rosyida Khikmawati ; Rizqi Dwi Maharani ; Nadiatul Khikmah. Theorem 8-9. A parallelogram is a rectangle if an only if its diagonal are congruent

leppert
Télécharger la présentation

Rectangles, Rhombuses, and Squares

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kelompok 3 Rectangles, Rhombuses, and Squares Annisa Luthfi Fadhilah Ma’ruf ; Rosyida Khikmawati ; Rizqi Dwi Maharani ; Nadiatul Khikmah

  2. Theorem 8-9 • A parallelogramis a rectangle if an only if its diagonal are congruent • Jajargenjangadalahsebuahpersegipanjangjikadanhanyajikadigonalnyakongruen

  3. We must prove two things 1. if the diagonals of a parallogram are congruent, then the paralellogram is rectangle 2. if a parallelogram is a rectangle, then the diagonals are congruent

  4. Jadi, segitiga ABD dan segitiga BAC kongruen (SSS postulate)

  5. Theorem 8-10 • A parallelogramis a rhombus if an only if its diagonal are perpendicular to each other • Jajargenjangadalahbelahketupatjikadanhanyajikadiagonalnyategaklurusdengan diagonal yang lainnya

  6. 2 1 1 1 2 2 2 1

  7. Theorem 8-11 A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

  8. PROOF Given: Prove that parallelogram ABCD would be rhombuses C D 30 60 60 30 90 O 60 30 30 60 A B

  9. Answer: ˂O = 90 ˂ DAO˂ BAO ˂ BCO ˂ DCO ˂CDO ˂ADO ˂ ABO ˂ CBO So, the parallelogram would be rhombuses C D 30 60 60 30 90 O 60 30 30 60 A B

  10. Theorem 8-12 The segment joining the midpoints of the two nonparallel sides of a trapezoid is parallel to the two bases and has a length equal to one half the sum of the lengths of the bases.

  11. PROOF Given: ABCD is a trapezoid with DC AB E the midpoint of AD and F the midpoint of BC Prove: EF AB, EF DC and EF= ½ (AB+CD)

  12. Extend AB and DF to meet at G. Then prove that F is midpoint of DG and use the Midsegment Theorem C D F E A B G

  13. It show that EF AB, EF DC and EF= ½ ( AB+CD)

  14. An isosceles trapezoid is a trapezoid with congruent nonparallel sides C D B A AD and BC are nonparallel sides. <A and <B are called base angles. <C and <D together are another pair of base angles.

  15. Theorem 8-13 In an isosceles trapezoid base angles are congruent and the diagonals are congruent

  16. 13. Given : ABCD is an isosceles trapezoid with AB ││CDProve : AC BD A

  17. Plan : Draw perpendiculars from D to AB intersecting at E and from C to AB intersecting at F and prove ∆ DEA ∆ CFB

  18. ˂

  19. 15. Given : ABCD is an isosceles trapezoid with AB││ CD Prove : <A <B Plan : Draw DE ││CB with E on AB

  20. Theorem 8-14 The sum of the measure of the angles of a convex polygon of n sides is (n-2) 180

  21. Masih ingat dengan rumus yang satu ini?? • α1+ α2+ α3+… + αn = (n-2) 180 • dengan  α1,α2,α3,… ,αn adalah besar sudut-sudut dalam dari suatu bangun datar segi-n.

  22. Segitiga Gambarlah sebuah segitiga, kemudian bagi segitiga tersebut menjadi segitiga (tidak harus sama besar) dan berikan label pada sudut-sudut yang terbentuk seperti gambar berikut

  23. Dari gambardiataskitaperolehtigapersamanberikut : • Θ1 = 180-(ß1+ ß2) • Θ2 = 180-(ß3+ ß4) • Θ3 = 180-(ß5+ ß6) • Jumlahkanketigapersamaantersebutsehinggadiperoleh: Θ1+ Θ2+ Θ3 = 3x180 – (ß1+ ß2+ ß3+ ß4+ ß5+ ß6) 360 = 3x180 – (ß1+ ß2+ ß3+ ß4+ ß5+ ß6) ß1+ ß2+ ß3+ ß4+ ß5+ ß6 = (3-2)x180

  24. Segiempat Gambarlah sebuah segiempat, kemudian bagi segiempat tersebut menjadi 4 segitiga (tidak harus sama besar) dan berikan label pada sudut-sudut yang terbentuk seperti gambar berikut

  25. Dari gambar di atas kita peroleh tiga persaman berikut : Θ1 = 180-(ß1+ ß2) Θ2 = 180-(ß3+ ß4) Θ3 = 180-(ß5+ ß6) Θ4 = 180-(ß7+ ß8)

  26. Jumlahkankeempatpersamaantersebutsehinggadiperoleh: Θ1+ Θ2+ Θ3+ Θ4 = 4x180 – (ß1+ ß2+ ß3+ ß4+ ß5+ ß6 + ß7+ ß8) 360 = 4x180 – (ß1+ ß2+ ß3+ ß4+ ß5+ ß6 + ß7+ ß8) ß1+ ß2+ ß3+ ß4+ ß5+ ß6 + ß7+ ß8 = (4-2)x180

  27. Theorem 8-15

  28. The sum of the measures of the exterior angles a polygon one at each vertex, is 360 Theorem 8-16 Bukti Jumlah n buah sudut dalam & sudut luar= n.180° Jumlah n buah sudut dalam =(n-2)180°- Jumlah n buah sudut luar =2.180°

  29. 3 2 2 3 1 4 4 1 5 5

More Related