460 likes | 887 Vues
Circular Trigonometric Functions. Circular Trigonometric Functions. Y. circle …center at (0,0) . radius r …vector with length/direction. r. θ. X. angle θ … determines direction . Y-axis. 90º. Quadrant II. Quadrant I. Terminal side. r. r. θ. X-axis.
E N D
Circular Trigonometric Functions
Circular Trigonometric Functions Y • circle…center at (0,0) • radius r…vector with • length/direction r θ X • angle θ… determines • direction
Y-axis 90º Quadrant II Quadrant I Terminalside r r θ X-axis 0º 180º Initial side 360º Quadrant III Quadrant IV 270º
Y-axis -270º Quadrant II Quadrant I -360º X-axis -180º Terminal side Initial side 0º r θ Quadrant III Quadrant IV -90º
angle θ…measured from positive x-axis, • orinitial side, to terminal side • counterclockwise: positive direction • clockwise: negative direction • four quadrants…numbered I, II, III, IV counterclockwise
six trigonometric functions for angle θ whose terminal side passes thru point (x, y) on circle of radius r sin θ = y / r csc θ = r / y cos θ = x / r sec θ = r / x tan θ = y / x cot θ = x / y These apply to any angle in any quadrant.
For any angle in any quadrant x2 + y2 = r2 … So, r is positive by Pythagorean theorem. (x,y) r y θ x
NOTE: right-triangle definitions are special case of circular functions when θ is in quadrant I Y (x,y) r y θ X x
*Reciprocal Identities sin θ = y / r and csc θ = r / y cos θ = x / r and sec θ = r / x tan θ = y / x and cot θ = x / y
*Ratio Identities *Both sets of identities are useful to determine trigonometric functions of any angle.
Positive trig values in each quadrant: Y All all six positive Students sin positive (csc) (-, +) (+, +) II I X III IV Take Classes (-, -) (+, -) tan positive (cot) cos positive (sec)
REMEMBER: In the ordered pair (x, y), x represents cosine and y represents sine. Y (-, +) (+, +) II I X III IV (-, -) (+, -)
#1 Draw each angle whose terminal side passes through the given point, and find all trigonometric functions of each angle. θ1: (4, 3) θ2: (- 4, 3) θ3: (- 4, -3) θ4: (4, -3)
x = y = r = I (4,3) sin θ = cos θ = tan θ = csc θ = sec θ = cot θ = θ1
x = y = r = II (-4,3) θ2 sin θ = cos θ = tan θ = csc θ = sec θ = cot θ =
x = y = r = sin θ = cos θ = tan θ = csc θ = sec θ = cot θ = θ3 (-4,-3) III
x = y = r = sin θ = cos θ = tan θ = csc θ = sec θ = cot θ = θ4 (4,-3) IV
Y Perpendicular line from point on circle alwaysdrawn to the x-axis forming a reference triangle II I ref θ2 θ1 X ref θ3 refθ4 IV III
Value of trig function of angle in any quadrant is equal to trig function of its reference angle, or it differs only in sign. Y II I ref θ2 θ1 X ref θ3 refθ4 IV III
#2 Given: tan θ = -1 and cos θ is positive: • Draw θ. Show the values for x, y, and r.
Given: tan θ = -1 and cos θ is positive: • Find the six trigonometric functions of θ.
Calculator Exercise
# 1 Find the value of sin 110º. (First determine the reference angle.)
#2 Find the value of tan 315º. (First determine the reference angle.)
#3 Find the value of cos 230º. (First determine the reference angle.)
#1 Draw the angle whose terminal side passes through the given point.
Find all trigonometric functions for angle whose terminal side passes thru .
Find all six trigonometric functions: sin θ = 0.6, cos θ is negative.
#3Find remaining trigonometric functions: sin θ = - 0.7071, tan θ= 1.000
Find remaining trigonometric functions: sin θ = - 0.7071, tan θ= 1.000
Calculator Practice
#1 Express as a function of a reference angle and find the value: cot 306º .
#2 Express as a function of a reference angle and find the value: sec (-153º) .
#3 Find each value on your calculator. (Key in exact angle measure.) sin 260.5º tan 150º 10’
cot (-240º) csc 450º
cos 5.41 sec (7/4)
π/2 = 1.57 0 2π = 6.28 π = 3.14 3π/2 = 4.71
# 1 The refraction of a certain prism is Calculate the value of n.
#2 A force vector F has components Fx= - 4.5 lb and Fy = 8.5 lb. Find sin θ and cos θ. Fy = 8.5 lb θ Fx=-4.5 lb
Fy = 8.5 lb θ Fx=-4.5 lb