1 / 28

Vibrations and Waves

Vibrations and Waves. Vibration: a repeating back-and-forth motion A vibration cannot exist in an instant Wave: a disturbance that repeats regularly in space and time A wave is a vibration in space and time Waves move energy from one position to another, not matter. Ex: Light and sound.

lori
Télécharger la présentation

Vibrations and Waves

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vibrations and Waves Vibration: a repeating back-and-forth motion A vibration cannot exist in an instant Wave: a disturbance that repeats regularly in space and time A wave is a vibration in space and time Waves move energy from one position to another, not matter. Ex: Light and sound

  2. Partsof a Sine Wave Sine wave: a pictorial representation of a wave. Crest: the highest part of a sine wave Trough: the lowest part of a sine wave Amplitude: The distance from the midpoint to the crest or from the midpoint to the trough. • The greatest vertical movement of the wave • SI unit: meters (m)

  3. Sine Wave

  4. Wavelength: the distance between successive identical parts of a sine wave. • How far until a wave repeats itself • Ex: crest to crest, trough to trough • SI unit: meters (m)

  5. Energy of a Wave • The energy transferred from a vibrating source is carried by a disturbance in the medium, not by matter moving from one place to another. • Waves moveENERGY, not matter • Energy carried by a wave consist of KE and PE

  6. In a pendulum, the greatest KE is at the bottom of the swing • This would be the middle (equilibrium line) of a sine wave • The greatest PE is at the tallest points of the swing • This would be the crest and trough of a sine wave • The total energy of wave remains the same • At the crests and troughs, there is the most PE and the least KE • At the middle, there is the most KE and the least PE

  7. Period and Frequency Period: the time required to complete one cycle. • The time for a wave to repeat itself • SI Unit: seconds (s)…same as for time • Period of a pendulum: • The time of a back and forth swing • The period depends ONLY on: • the length of the pendulum • A long pendulum has a longer period than a shorter pendulum. • the acceleration due to gravity.

  8. Check Your Understanding Which will have a greater period, a pendulum with a 5 kg mass on 1 m of string or a pendulum with a 10 kg mass on 1 m of string? • Neither! They both have the same period because they both have the same length. Mass has NO affect on the period of a pendulum.

  9. Frequency: How frequently a vibration occurs. • # waves per second • Unit: Hertz (Hz) which means per second (1/s). • If the frequency of a vibrating object is known, its period can be calculated and vice-versa. • The frequency and period are inverses of each other. f = 1/T T = 1/f • f = frequency • Measured in Hertz (Hz) • T = period • Measured in seconds (s)

  10. Check Your Understanding What is the frequency in vibrations per second of a 100 Hz wave? • 100 Hz vibrates 100 times per second The Sears Building in Chicago sways back and forth at a frequency of about 0.1 Hz. What is the period of vibration? • T=? f = 0.1 Hz T = 1/f T = 1/0.1 = 10 seconds

  11. Transverse Waves Transverse wave: a wave with a vibration at right angles to the direction the wave is traveling. • The energy moves through the medium left to right, but the motion of the wave is up and down • Makes an “S” shape wave • Ex: light waves, string instrument

  12. Longitudinal Waves Longitudinal wave: a wave in which the vibration is in the same direction as that which the wave is traveling. • Both the energy motion and the movement of the wave are left to right • Makes a pulse through the wave • Ex: sound waves, earthquake waves

  13. Interference • An interference pattern is formed by the overlapping of two or more waves that arrive in a region at the same time. • There are 2 types of interference • Constructive interference • Destructive interference

  14. Constructive Interference Constructive interference: addition of two or more waves when wave crests overlap to produce a resulting wave of increased amplitude • The amplitude of the two original crests are combined to add to the new amplitude • Ex: A noisy room (several sound waves adding at the same time)

  15. Destructive Interference Destructive interference: combination of waves where the crests of one wave overlap troughs of another, resulting in a wave of decreased amplitude. • The amplitude of the original waves are subtracted because they are in opposite directions • Ex: anti-noise technology cancels out sound

  16. Principle of Superposition Principle of Superposition: the displacement of a medium caused by two or more waves is the algebraic sum of the displacements caused by the individual waves • When two waves interfere with each other, the combined amplitude depends on the direction and height of the amplitude of the original wave. • Ex: subtracting amplitudes with destructive interference, adding amplitudes with constructive interference

  17. Check Your Understanding Two waves reach the same place at the same time. One has an amplitude of 2 m up and the other has an amplitude of 3 m up. What type of interference is this? • Constructive interference b/c both amplitudes are in the same direction. What is the new amplitude? • Because they are up going up, you add the amplitudes. 2 + 3 = 5 m

  18. Check Your Understanding Two waves reach the same place at the same time. One has an amplitude of 4 m up and the other has an amplitude of 4 m down. What type of interference is this? • Destructive interference b/c the amplitudes are in opposite directions. What is the new amplitude? • 4 – 4 = 0 m. There is no amplitude!

  19. The Doppler Effect Doppler effect: the change in frequency due to the motion of the source or the receiver. • The greater the speed of the source, the greater the Doppler effect will be. • Ex: the shift in pitch of a siren as it drives past you

  20. The Doppler Effect for Sound • The pitch of sound is higher when the source moves toward you, and lower when the source moves away from you. • Pitch is the same as frequency • As a source (like a siren) and a receiver (like you) move closer together, the pitch increases b/c the frequency increases • As a source (like a siren) and a receiver (like you) move away from each other, the pitch decreases b/c the frequency decreases

  21. http://www.colorado.edu/physics/2000/applets/doppler2.html • http://www.colorado.edu/physics/2000/applets/doppler.html

  22. The Doppler Effect for Light • When the light source approaches, there is an increase in its measured frequency, and when it recedes, there is a decrease in its frequency. • An increase in frequency is called a blue shift because it is shifted toward the high frequency, or blue, end of the color spectrum. • A decrease in frequency is called a red shift because it is shifted toward the low-frequency, or red end, of the color spectrum. • Blue shift  object moves closer • Red shift  object moves away

  23. Check Your Understanding When a source moves towards you, do you measure an increase or decrease in wave speed? • Neither, you measure the change in FREQUENCY. Does the pitch increase or decrease? • The pitch increases Does the frequency increase or decrease? • Because the pitch increases, so does the frequency

  24. Check Your Understanding On the news, if they say that the Doppler Radar is showing a blue shift for a storm front, is the storm moving towards you or away from you? • Towards you. A blue shift is an increase in frequency, so the source (the storm) is moving towards the receiver (you).

More Related