1 / 37

Large Hadron electron Collider LHeC …

Large Hadron electron Collider LHeC …. … indisputably the next step. Deep-Inelastic Lepton Scattering at the LHC. John Dainton * Cockcroft Institute , Daresbury Science and Innovation Centre, GB. http://www.lancs.ac.uk/cockcroft-institute/. Introduction

lramos
Télécharger la présentation

Large Hadron electron Collider LHeC …

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Large Hadron electron Collider LHeC … … indisputably the next step Deep-Inelastic Lepton Scattering at the LHC John Dainton* Cockcroft Institute, Daresbury Science and Innovation Centre, GB http://www.lancs.ac.uk/cockcroft-institute/ • Introduction • LHeC: “energy, precision and luminosity” • 3. The Physics Horizon • 4. Experiment • 5. Onwards ? *with M Klein (DESY Zeuthen) P Newman (Univ Birmingham), E Perez (CE Saclay) F Willeke (DESY Hamburg) hep-ex/0603016 DESY 06-006 Cockcroft-06-05

  2. Introduction

  3. 2007: a vintage year for Physics ●July 2007: final HERA data sample e± p chiral probe @ 0.001 fm ●July 2007: first collisions @ LHC pp @ 14000 GeV @ 1033 cm-2 s-1 ●July 2007: hitherto unique p and A beam 7 TeV per nucleon, high intensity new opportunities ? LR ? 20??: 70 GeV e± in LHC tunnel e± p chiral probe @ 0.00014 fm LR

  4. Kinematic Reach ●70 7000 GeV e±p cm energy 1400 GeV space-like >TeV e ? RL  Z W 3×10-7 ? quark structure @ ≥ 0.0001 fm eq>TeV

  5. Structure of Matter ●unique chiral probe @ 0.0001 fm ?     dstructure nucleus nucleon q = 2/ electron  point-like “source” Z0 W quark ● gluons EW NC+CC+gluon LHeC ? ●precision

  6. Progress … ?  (fm) -0.0001 -0.0003 -0.001 -0.003 -0.01 -0.03 -0.1 beyond? ep eA ? leptons + quarks hadronic mass in Universe Higgs mass CKM LQ l* q* SUSY? LHeC ? ep HERA SM EW QCD .. ? .p p A QCD+EW unification QCD+EW e+e-. ep eA ep eA HERA .ep pSLAC+CERN CERN+FNAL ? QCD spin gluon HF+EW QPM quarks in proton NC P 1960 1970 1980 1990 2000 2010 ….?

  7. 2. LHeC: “energy, precision 2. LHeC: “energy, precision and luminosity” 2. LHeC: “energy,

  8. Proton beam ●”standard” LHC protons … with electrons? antiprotons protons protons electrons? protons Np εpN

  9. ep Luminosity ●few 10s GeV electrons (LEP = 70 GeV!) ●RF power = 50 MW = 0.86 LEP = 28% CERN site ●RF power = synchrotron radiation Ie= 74 mA luminosity 74×10-3×1.67×1011×7000/.938 = “perfect” bunch x-ing 4π×1.6×10-19×3.75×10-6× (m2) cm-2 s-1 L = 1.15×1033/ L ~ 1033 cm-2s-1 for reasonable p-beam β ~ 1 m

  10. e±p Luminosity ●astounding ! ●×102LNMC @ 0.01 fm ●LeRHIC @ 0.007 fm ●×102LHERA @ 0.001 fm ●LLHeCe±p @ 0.00014 fm indisputably the next step … is it feasible ?

  11. Feasible Luminosity ? ●bunch matching βeεe= βpεp= βpγp ●electron βeconstrained by depth of focus for p-bunches σp ~ 7 cm σp ●electron emittance εe constrained by - dynamic aperture - geometric aperture - beam-beam tune shifts feasible match with tolerable “hour-glass” loss

  12. LHeC Specification

  13. Lepton Ring ●in LEP tunnel so like LEP - FODO in eight arcs β-tron phase advance φH=108oφV=90o - bending radius 3005.3 m - (δE/Ebeam)rms = 1.1×10-3 - SR 26 W/cm (Ec=254 KeV) - scRF @ 1GHz resonators @ 12 MV/m 100 m structure = 670 cells  sync. Phase 31o  bucket takes 10× (δE/Ebeam)rms - unlikely e-beam instability single bunch current modest impedance << LEP 8 7 1 6 2 5 3 4 LEP=9 W/cm HERA=13.5 W/cm scRF proven @ 6 MV/m

  14. Lepton Ring LHeC

  15. ep Collisions ●afterB physics @ LHC e p civil engineering tunnel 2×250m×2m Ø @IP LHeC duringpp pA AA data-taking @ LHC

  16. Interaction Region ●highest lumi - low βe close sc quads - low x-ing angle “hard” bend SR fan  sc p-beam « HERA - “crab” RF cavity p-bunch rotation top elevation “crabbed” (rotated) p-bunch V-displaced 3.4 kW 3.2 kW 11.4 kW 3.5 mrad 0.5 mrad ●1o beam access = low-lumi/low-x option (cf HERA)

  17. Interaction Region ●high luminosity operation

  18. Operational Luminosity ●beam-beam - “hour-glass” - dynamic β: < HERA - long range beam-beam (parasitic interactions): marginal ! operational luminosity

  19. IR and Experiment ●IR ±many m ●IR ≥9.4o around beam

  20. LHeC ●tunnel exists (LEP, LHC) ●injection once existed (LEP) ●operating p-beam (from 2007) ●operating A-beam (from 2007) ●ep operating alongside pppAAA ●LHC upgrade ●cost ?

  21. 3.The Physics Horizon

  22. New Kinematic Reach in Lepton-Hadron space-like >TeV ●Q2LHEC 102Q2HERA ●xLHEC 10-2xHERA ●sLHEC 20sHERA eq eq 3×10-7 ●extrapolation … …or interpolation? eq>TeV

  23. Lepton-Parton and Parton-Parton ●sLHC 102×sLHeC 70 GeV ●for target parton xprobe/proton = = 0.01 @ LHC sLHeC sLHC ●LHC probe - confused LHC>LHeC - complementary for LHC~LHeC gluon @ low-x

  24. Energy Frontier ●leptoquarks e e  Z 10 fb-1 (1 year @ LHeC) q e e + LQ q e 2 q … + 100 fb-1 LQ q

  25. Energy Frontier e ●leptoquarks -formation and decay -e±qNC,CC -fermion number -branching ratios -spin-parity -chirality ? -flavourcoupling e  Z q e e + LQ q e 2 q … + LQ ●if LQ spectroscopy discovered precision tools to understand it q

  26. Dense Chromodynamics ●relentless low-xrise of F2 for x ≥ 10-4 -saturation?partons must someday recombine -LHeC: precision for x > 3×10-7: extreme nuclei ? (∂F2/∂ lnx)Q2

  27. Precision Chromodynamics ●short distance structure of QCD -2006 @ 10-9 -2006 GF@ 10-5 -2006 G@ 0.1% -2006 S @ 1-2% -LHeC  precisionS few/mil ●discovery + precision probe new chromodynamic physics ?

  28. Comprehensive Physics Horizon ●energy for eq discovery extreme chromodynamics ●precision for eq discovery eq understanding extreme chromodynamics ●luminosity for eq discovery LHeC and LHC LHeC and ILC LHeC and LHC

  29. 4. Experiment

  30. Acceptance and Measurement ●70 7000 GeV ●high lumi quads (±10o bp) Q2 > 100 GeV2x > 3×10-5 ●few GeV ≤ Eh,e≤ few TeV ●low lumi for low x (no quads)  1 < Q2< 100 GeV2 x < 3×10-5 “forward” hadrons: “forward rapgap” instrumentation precision e/had-measurement 170 < θe< 179o170 < θh< 179o e jet e !

  31. Rate ●100/10 fb-1 = 100/LHeC y-1 @ Q2 = 1 TeV2

  32. 8. Onwards ?

  33. Now ●LHeC 70e 7000p GeV - can be built - has startlingly good luminosity 1033 cm-2s-1 grows with LHC pp luminosity - adds substantially, uniquely and with synergy to LHCTeVenergy physics - probes chromodynamics @ new density frontier in uniquely comprehensive manner with unchallengable precision synergetically with LHC pppAAA

  34. Now ●CERN: Engelen “work it out!” Fall 2005 ●hep-ex/0603016 toCERN Strategy group Jan 2006 - emphasised by speakers - encouraging individual response ●hep-ex/0603016 noted in the US  DoE strategy: meeting now on lepton-hadron ●strong interest in LHeC @ DIS2006 … to be carried to CERN Strategy group by its members @ DIS2006 - implies global support - confirms importance of breadth in future HEP Strategy Group  “interesting to work it out” ? ?

  35. Next ●begin preparation of detailed evaluation - establish global working group (CERN pivotal) 1. machine e±injection e± ring LHC impact and modifications 2. experiment 3. physics ●look for any remaining “showstoppers” ●prepare CERN “white book” ●LoI to LHCC ●cost 2009 ? other LHC upgrades?

  36. Coordinating Group ●organisation ? ●coordinator(s) ? ●first meeting where ? ●first meeting when ? ●first meeting to organise work + schedule

  37. In case you were wondering … ? Sir John Cockcroft … doing accelerator physics ca 1950 … … with 1950 DAQ – pencil and paper! … with 1950 graphics – ammeter! voltmeter!

More Related