590 likes | 841 Vues
Agglomerative clustering (AC). Clustering algorithms: Part 2c. Pasi Fränti 25.3.2014 Speech & Image Processing Unit School of Computing University of Eastern Finland Joensuu, FINLAND. Agglomerative clustering Categorization by cost function. Single link
E N D
Agglomerative clustering (AC) Clustering algorithms: Part 2c • Pasi Fränti • 25.3.2014 • Speech & Image Processing Unit • School of Computing • University of Eastern Finland • Joensuu, FINLAND
Agglomerative clusteringCategorization by cost function Single link • Minimize distance of nearest vectors Complete link • Minimize distance of two furthest vectors Ward’s method • Minimize mean square error • In Vector Quantization, known as Pairwise Nearest Neighbor (PNN) method We focus on this
Pseudo code • PNN(X, M) → C, P • FOR i←1 TO N DO • p[i]←i; c[i]←x[i]; • REPEAT • a,b ← FindSmallestMergeCost(); • MergeClusters(a,b); • m←m-1; • UNTIL m=M; O(N) O(N2) N times T(N) = O(N3)
Ward’s method[Ward 1963: Journal of American Statistical Association] Merge cost: Local optimization strategy: Nearest neighbor search: • Find the cluster pair to be merged • Update of NN pointers
Example of the overall process M=5000 M=50 M=5000 M=4999 M=4998 . . . M=50 . . M=16 M=15 M=16 M=15
Example - 25 Clusters MSE ≈ 1.01*109
Example - 24 Clusters MSE ≈ 1.03*109
Example - 23 Clusters MSE ≈ 1.06*109
Example - 22 Clusters MSE ≈ 1.09*109
Example - 21 Clusters MSE ≈ 1.12*109
Example - 20 Clusters MSE ≈ 1.16*109
Example - 19 Clusters MSE ≈ 1.19*109
Example - 18 Clusters MSE ≈ 1.23*109
Example - 17 Clusters MSE ≈ 1.26*109
Example - 16 Clusters MSE ≈ 1.30*109
Example - 15 Clusters MSE ≈ 1.34*109
Storing distance matrix • Maintain the distance matrix and update rows for the changed cluster only! • Number of distance calculations reduces from O(N2) to O(N) for each step. • Search of the minimum pair still requires O(N2) time still O(N3) in total. • It also requires O(N2) memory.
Heap structure for fast search[Kurita 1991: Pattern Recognition] • Search reduces O(N2) O(logN). • In total: O(N2 logN)
Store nearest neighbor (NN) pointers[Fränti et al., 2000: IEEE Trans. Image Processing] Time complexity reduces to O(N 3) Ω (N 2)
Pseudo code • PNN(X, M) → C, P • FOR i←1 TO N DO • p[i]←i; c[i]←x[i]; • FOR i←1 TO N DO • NN[i]← FindNearestCluster(i); • REPEAT • a ← SmallestMergeCost(NN); • b ← NN[i]; • MergeClusters(C,P,NN,a,b,); • UpdatePointers(C,NN); • UNTIL m=M; O(N) O(N2) O(N) O(N) http://cs.uef.fi/pages/franti/research/pnn.txt
Example with NN pointers[Virmajoki 2004: Pairwise Nearest Neighbor Method Revisited ]
Processing time comparison With NN pointers
Algorithm:Lazy-PNN T. Kaukoranta, P. Fränti and O. Nevalainen, "Vector quantization by lazy pairwise nearest neighbor method", Optical Engineering, 38 (11), 1862-1868, November 1999
Monotony property of merge cost [Kaukoranta et al., Optical Engineering, 1999] Merge costs values are monotonically increasing: d(Sa, Sb) d(Sa, Sc) d(Sb, Sc) d(Sa, Sc) d(Sa+b, Sc)
Lazy variant of the PNN • Store merge costs in heap. • Update merge cost value only when it appears at top of the heap. • Processing time reduces about 35%.
Combining PNN and K-means K-means
Algorithm:Iterative shrinking P. Fränti and O. Virmajoki “Iterative shrinking method for clustering problems“Pattern Recognition, 39 (5), 761-765, May 2006.
Agglomeration based on cluster removal[Fränti and Virmajoki, Pattern Recognition, 2006]
Cluster removal in practice Find secondary cluster: Calculate removal cost for every vector:
Complexity analysis Number of vectors per cluster: If we iterate until M=1: Adding the processing time per vector:
Algorithm:PNN with kNN-graph P. Fränti, O. Virmajoki and V. Hautamäki, "Fast agglomerative clustering using a k-nearest neighbor graph". IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (11), 1875-1881, November 2006