1 / 19

A brief introduction to neuronal dynamics

A brief introduction to neuronal dynamics. Gemma Huguet Universitat Politècnica de Catalunya In Collaboration with David Terman Mathematical Bioscience Institute Ohio State University. Outline Goal of mathematical neuroscience : develop and analyze models for neuronal activity patterns.

macon-park
Télécharger la présentation

A brief introduction to neuronal dynamics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A brief introduction to neuronal dynamics Gemma Huguet Universitat Politècnica de Catalunya In Collaboration with David Terman Mathematical Bioscience Institute Ohio State University

  2. Outline Goal of mathematical neuroscience: develop and analyze models for neuronal activity patterns. • 1. Some biology 2. Modeling neuronal activity patterns • Single neuron models. Hodgkin-Huxley formalism. • Coupling between neurons. Chemical synapsis. • Network architecture. • Example. Numerical simulations of network activity patterns. Synchronization. • Conclusions.

  3. The brain ~ 1012 Neurons ~ 1015 Synapses How do we model neuronal systems?

  4. The neuron Electrical signal: Action potential that propagates along axon

  5. Hodgin-Huxley model (1952) Describe the generation of action potentials in the squid giant axon Nobel Prize, 1963

  6. + + + Na Na Na + + + K K K Membrane potential • The membrane cell separates two ionic solutions with different concentrations (ions are electrically charged atoms). • Membrane potential due to charge separation across the cell membrane. V=Vin-Vout (by convention Vout=0) • Resting state V=-60 to -70 mV • Ionic channels embedded in the cell membrane (Na+ and K+ channels)

  7. Open channel Closed channel Direction of propagation of nervous impulse K+ K+ Cell body Active state (action potential) Resting Repolarization (K+) Resting and temporarily unable to fire Electrical signal 0 mV Travelling wave -60 mV Actionpotential

  8. Action potential that propagates along the axon x V 0 mV -60 mV

  9. Electrical activity of cells • Electrical parameters: • Potential Difference V(x,t)=Vin -Vout • Current I(t) • Conductance g(t), Resistance R(t)=1/g(t) • Capacitance C • Rules for electrical circuits • Capacitor (Two conducting plates separated by an insulating layer. It stores charge). C dV/dt = I • Ohm´s Law I=Vg, IR=V Current balance equation for membrane C∂V/∂t= D ∂2V/∂x2- Iion + Iapp = D ∂2V/∂x2 - Σi gi (V-Vi)+Iapp

  10. Hodgin-Huxley model (1952) Model for electronically compact neurons V(x,t)=V(t). CdV/dt = - INa - IK – IL + Iapp = – gNam3h(V-VNa) - gKn4(V-VK) - gL(V-VL) + Iapp dm/dt = [m∞(V)-m]/m(V) dh/dt = [h∞(V) - h]/h(V) dn/dt = [n∞(V) – n]/n(V) Vmembrane potential h,m,nchannel state variables

  11. Other models… • The models for single neurons are based on HH formalism. • Models for describing some activity patterns: silent, bursting, spiking. • Reduced models to study networks consisting of a large number of coupled neurons. • C dv/dt = f(v,w) + I • dw/dt = εg(v,n)

  12. Chemical synapsis • Synapsis can be: • Excitatory • Inhibitory Presynaptic neuron Postsynaptic neuron

  13. Reduced model for chemical synapsis Model for two mutually coupled neurons dv1/dt = f(v1,w1) – gsyns2(v1 – vsyn) dw1/dt = eg(v1,w1) ds1/dt= a(1-s1)H(v1-q)-bs1 dv2/dt = f(v2,w2) – gsyns1(v2 – vsyn) dw2/dt = eg(v2,w2) ds2/dt = a(1-s2)H(v2-q)-bs2 Cell 1 Cell 2 • Assume si= H(vj-q), H Heaviside function • (vi – vsyn) <0 (>0) excitatory (inhibitory) synapsis

  14. Reduced model for chemical synapsis Model for two mutually coupled neurons dv1/dt = f(v1,w1) – gsyns2(v1 – vsyn) dw1/dt = eg(v1,w1) dv2/dt = f(v2,w2) – gsyns1(v2 – vsyn) dw2/dt = eg(v2,w2) s1= H(v1-q), s2 = H(v2-q) Cell 1 Cell 2 • H Heaviside function ( H(x)=1 if x>0 and H(x)=0 if x<0 ) • (vi – vsyn) <0 (>0) excitatory (inhibitory) synapsis

  15. Network Architecture • Which neurons communicate with each other. • How are the synapsis: excitatory or inhibitory. • Exemple. Architecture of the STN/GPe network (Basal Ganglia, involved in the control of movement ) GPe CELLS STN CELLS

  16. Modeling neuronal activity patterns • Neuronal networks contain many parameters and time-scales: • Intrinsic properties of individual neurons: Ionic channels. • Synaptic properties: Excitatory/Inhibitory; Fast/Slow. • Architecture of coupling. • Network activity patterns: • Syncrhronized oscillations (all cell fires at the same time). • Clustering (the population of cells breaks up into subpopulations; within each single block population fires synchronously and different blocks are desynchronized from each other). • More complicated rythms QUESTION: How do these properties interact to produce network behavior?

  17. Example. Numerical simulations of network activity. Clustering and propagating activity patterns

  18. Synchronization • Why is synchronization important? • How do the brain know which neurons are firing according to the same reason? • Some diseases like Parkinson are associated to synchronization.

  19. Conclusions • Goal of neuroscience: unsderstand how the nervous system communicates and processes information. • Goal of mathematical neuroscience: Develop and analyze mathematical models for neuronal activity patterns. • Mathematical models • Help to understand how AP are generated and how they can change as parameters are modulated. • Interpret data, test hypothesis and suggest new experiments. • The model has to be chosen at an appropriate level: complex to include the relevant processes and “easy” to analyze.

More Related