1 / 23

Counting Subsets of a Set: Combinations

Counting Subsets of a Set: Combinations. Lecture 33 Section 6.4 Tue, Mar 27, 2007. Lotto South. In Lotto South, a player chooses 6 numbers from 1 to 49. Then the state chooses at random 6 numbers from 1 to 49.

magnar
Télécharger la présentation

Counting Subsets of a Set: Combinations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Counting Subsets of a Set: Combinations Lecture 33 Section 6.4 Tue, Mar 27, 2007

  2. Lotto South • In Lotto South, a player chooses 6 numbers from 1 to 49. • Then the state chooses at random 6 numbers from 1 to 49. • The player wins according to how many of his numbers match the ones the state chooses. • See the Lotto South web page.

  3. Lotto South • There are C(49, 6) = 13,983,816 possible choices. • Match all 6 numbers • There is only 1 winning combination. • Probability of winning is 1/13983816 = 0.00000007151.

  4. Lotto South • Match 5 of 6 numbers • There are 6 winning numbers and 43 losing numbers. • Player chooses 5 winning numbers and 1 losing numbers. • Number of ways is C(6, 5) C(43, 1) = 258. • Probability is 0.00001845.

  5. Lotto South • Match 4 of 6 numbers • Player chooses 4 winning numbers and 2 losing numbers. • Number of ways is C(6, 4) C(43, 2) = 13545. • Probability is 0.0009686.

  6. Lotto South • Match 3 of 6 numbers • Player chooses 3 winning numbers and 3 losing numbers. • Number of ways is C(6, 3) C(43, 3) = 246820. • Probability is 0.01765.

  7. Lotto South • Match 2 of 6 numbers • Player chooses 2 winning numbers and 4 losing numbers. • Number of ways is C(6, 2) C(43, 4) = 1851150. • Probability is 0.1324.

  8. Lotto South • Match 1 of 6 numbers • Player chooses 1 winning numbers and 5 losing numbers. • Number of ways is C(6, 1) C(43, 5) = 3011652. • Probability is 0.4130.

  9. Lotto South • Match 0 of 6 numbers • Player chooses 6 losing numbers. • Number of ways is C(43, 6) = 2760681. • Probability is 0.4360.

  10. Lotto South • Note also that the sum of these integers is 13983816. • Note also that the lottery pays out a prize only if the player matches 3 or more numbers. • Match 3 – win $5. • Match 4 – win $75. • Match 5 – win $1000. • Match 6 – win millions.

  11. Lotto South • Given that a lottery player wins a prize, what is the probability that he won the $5 prize? • P(he won $5, given that he won) = P(match 3)/P(match 3, 4, 5, or 6) = 0.01765/0.01864 = 0.9469.

  12. Example • Theorem (The Vandermonde convolution): For all integers n 0 and for all integers r with 0 rn, • Proof: See p. 362, Sec. 6.6, Ex. 18.

  13. Another Lottery • In the previous lottery, the probability of winning a cash prize is 0.018637545. • Suppose that the prize for matching 2 numbers is… another lottery ticket! • Then what is the probability of winning a cash prize?

  14. Lotto South • What is the average prize value of a ticket? • Multiply each prize value by its probability and then add up the products: • $10,000,000  0.00000007151 = 0.7151 • $1000  0.00001845 = 0.0185 • $75  0.0009686 = 0.0726 • $5  0.01765 = 0.0883 • $0  0.9814 = 0.0000

  15. Lotto South • The total is $0.8945, or 89.45 cents (assuming that the big prize is ten million dollars). • A ticket costs $1.00. • How large must the grand prize be to make the average value of a ticket more than $1.00?

  16. Another Lottery • What is the average prize value if matching 2 numbers wins another lottery ticket?

  17. Permutations of Sets with Repeated Elements • Theorem: Suppose a set contains n1 indistinguishable elements of one type, n2 indistinguishable elements of another type, and so on, through k types, where n1 + n2 + … + nk = n. Then the number of (distinguishable) permutations of the n elements is n!/(n1!n2!…nk!).

  18. Proof of Theorem • Proof: • Rather than consider permutations per se, consider the choices of where to put the different types of element. • There are C(n, n1) choices of where to place the elements of the first type.

  19. Proof of Theorem • Proof: • Then there are C(n – n1, n2) choices of where to place the elements of the second type. • Then there are C(n – n1 – n2, n3) choices of where to place the elements of the third type. • And so on.

  20. Proof, continued • Therefore, the total number of choices, and hence permutations, is C(n, n1) C(n – n1, n2) C(n – n1 – n2, n3) … C(n – n1 – n2 – … – nk – 1, nk) = …(some algebra)… = n!/(n1!n2!…nk!).

  21. Example • How many different numbers can be formed by permuting the digits of the number 444556?

  22. Example • How many permutations are there of the letters in the word MISSISSIPPI? • How many for VIRGINIA? • How many for INDIVISIBILITY?

  23. Poker Hands • Two of a kind. • Two pairs. • Three of a kind. • Straight. • Flush. • Full house. • Four of a kind. • Straight flush. • Royal flush.

More Related