190 likes | 305 Vues
This study explores the prediction of gravitational microlensing events through detailed tracking of high proper motion stars. By fitting light curves of long-duration binary events, we derived the mass function of observed microlensing occurrences. The analysis utilized data from ARIES Images and focused on various events, highlighting key parameters such as timescales, amplitude, and magnitude. Our findings shed light on the potential presence of black holes and their role in microlensing, contributing to a deeper understanding of gravitational phenomena.
E N D
Gravitational Microlensing Events Diane Feuillet Kailash Sahu
Tracking High Proper Motion Stars to Predict Possible Microlensing Events Fitting Light Curves of Long-Duration Binary Events Derived the Mass Function of Observed Events From the Timescales
Poss 2 blue 1997 5 3 4 6 2 1 7
Poss 2 blue 1997 5 ARIES Images-240 2009 3 6 4 2 1 5 7 4 3 2 1 6 7
Poss 2 blue 1997 5 ARIES Images-240 2009 3 6 4 2 1 7 6 5 3 4 2 1 7
6 600 Y position 5 4 3 2 1 7 400 600 400 x position
515 Y position 510 2 D = 0.400 arcsec T = 2/1/2012 1 505 445 450 440 x position
Te = 141 days 1 Amplitude 1999-19 Te1 = 60 days Te2 = 120 days I mag = 15.9 1300 1700 HJD - 2450000 HJD - 2450000
Te = 207 days 0.5 Amplitude 2006-393 Te1 = 90 days Te2 = 74 days I mag = 14.9 0 3900 4200 HJD - 2450000
1 Possible Black Holes? 2008-143 Te1 = 40 days Te2 = 35 days I mag = 17.6 Amplitude 0.5 4500 4800 HJD - 2450000
4 Three body systems 3 Amplitude 2002-051 Te1 = 8 days Te2 = 12 days Te3 = 20 days I mag = 17.8 2 1 0 2250 2400 HJD - 2450000
Te = 139 days 1 Amplitude 0.5 2003-095 Te1 = 26 days Te2 = 26 days Te3 = 15 days I mag = 15.6 0 2800 3200 HJD - 2450000
2 2004-039 Te1 = 22 days Te2 = 1 days I mag = 17.3 Amplitude 1 Some do not fit well 0 3060 3100 HJD - 2450000 2003-056 Te1 = 15 days Te2 = 20 days I mag = 16.8 Amplitude 1 0 2800 2650 HJD - 2450000