1 / 26

High Pressure study of Bromine

High Pressure study of Bromine. Shimizu Lab M1 Hayashi Yuma. Contents. Introduction Iodine Bromine Summary Next plan. Introduction. room –temperature superconductor?. http://www.cqst.osaka-u.ac.jp. molecular dissociation. ( 分子解離 ). pressurization. pressurization.

marci
Télécharger la présentation

High Pressure study of Bromine

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Pressure study of Bromine Shimizu Lab M1Hayashi Yuma

  2. Contents • Introduction Iodine • Bromine • Summary • Next plan

  3. Introduction room –temperature superconductor? http://www.cqst.osaka-u.ac.jp

  4. molecular dissociation (分子解離) pressurization pressurization monatomic metal Molecule Insulator (単原子金属) introduction High-PressureEffect Applying pressure means… ・Structural transition ・Insulator-Metal transition The atomic distance becomes closer. Electronic states change.

  5. introduction Structural phase transition of iodine High pressure Ambient pressure face-centered-cubic body-centered-tetragonal body-centered-orthorhombic I phase • molecular • insulator ・atomic • ・metal Molecular dissociation @21GPa Y. Fujii, K. Hase, N. Hamaya, Y. Ohishi, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. Lett. 58, 796 (1987). B. Albert, K. Schmit, Z. Anorg. Allg. Chem. 627, 809 (2001).

  6. N. Sakai, K. Takemura and K. Tsuji, J. Phys.Soc. Jpn. 51, 1811 (1982). introduction Electrical property of Iodine in high pressure The temperature dependence of electrical resistance of iodine becomes positive at 14-16 GPa, indicating insulator to metal transition

  7. introduction Superconductivity of iodine Iodine becomes superconductor in phase Ⅱ at about 1.2 K. K. Shimizu et al., J. Phys. Soc. Jpn., 61, 3853 (1992).

  8. introduction Hall Effect of Iodine V+ V- I- I+ B V0 [top view] ・The carrier of iodine is ‘hole’.

  9. introduction RH= T. Yamauchi et al., J. Phys. Soc. Jpn., 63, 3207-3209 (1994). Tc∝θDexp[-1/N(0)V] ( n:carrier density)

  10. introduction Phase diagram of iodine Monatomic phase Moleculardissociation Molecular phase (Ⅰ) Crystal structure R.T. (Ⅱ) (Ⅲ) (Ⅳ) Electrical characteristic metal Insulator Superconductor 43 55 0 16 21 Pressure [GPa] ・Iodine becomes superconductor in phase Ⅱ at about 1.2 K. ・The carrier of iodine is ‘hole’.

  11. introduction Ⅴ phase between Ⅰ and Ⅱ phaseat 24-25 GPa Monoatomicphase Molecular phase (Ⅰ) Crystal structure (Ⅴ) R.T. (Ⅱ) (Ⅲ) (Ⅳ) ・incommensuratestructure ・metal K. Takemura et al., Nature 423, 971 (2003).

  12. Introduction room –temperature superconductor? http://www.cqst.osaka-u.ac.jp

  13. molecular dissociation (分子解離) pressurization pressurization monatomic metal Molecule Insulator (単原子金属) introduction High-PressureEffect Applying pressure means… ・Structural transition ・Insulator-Metal transition The atomic distance becomes closer. Electronic states change.

  14. introduction Structural phase transition of iodine High pressure Ambient pressure face-centered-cubic body-centered-tetragonal body-centered-orthorhombic I phase • molecular • insulator ・atomic • ・metal Molecular dissociation @21GPa Y. Fujii, K. Hase, N. Hamaya, Y. Ohishi, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. Lett. 58, 796 (1987). B. Albert, K. Schmit, Z. Anorg. Allg. Chem. 627, 809 (2001).

  15. N. Sakai, K. Takemura and K. Tsuji, J. Phys.Soc. Jpn. 51, 1811 (1982). introduction Electrical property of Iodine in high pressure The temperature dependence of electrical resistance of iodine becomes positive at 14-16 GPa, indicating insulator to metal transition

  16. introduction Superconductivity of iodine Iodine becomes superconductor in phase Ⅱ at about 1.2 K. K. Shimizu et al., J. Phys. Soc. Jpn., 61, 3853 (1992).

  17. introduction Hall Effect of Iodine V+ V- I- I+ B V0 [top view] ・The carrier of iodine is ‘hole’.

  18. introduction RH= T. Yamauchi et al., J. Phys. Soc. Jpn., 63, 3207-3209 (1994). Tc∝θDexp[-1/N(0)V] ( n:carrier density)

  19. introduction Phase diagram of iodine Monatomic phase Moleculardissociation Molecular phase (Ⅰ) Crystal structure R.T. (Ⅱ) (Ⅲ) (Ⅳ) Electrical characteristic metal Insulator Superconductor 43 55 0 16 21 Pressure [GPa] ・Iodine becomes superconductor in phase Ⅱ at about 1.2 K. ・The carrier of iodine is ‘hole’.

  20. introduction Ⅴ phase between Ⅰ and Ⅱ phaseat 24-25 GPa Monoatomicphase Molecular phase (Ⅰ) Crystal structure (Ⅴ) R.T. (Ⅱ) (Ⅲ) (Ⅳ) ・incommensuratestructure ・metal K. Takemura et al., Nature 423, 971 (2003).

  21. Structural phase transition of bromine Molecular dissociation near 80 GPa Y. Fujii et al.,Phys. Rev. Lett. 63, 536(1989)

  22. Electrical property of bromine Above 90GPa, small drops in electrical resistance are observed, which show the onset of superconductivity. K Amayaet al 1998 J. Phys.: Condens. Matter10 11179

  23. Summary • Bromine has molecular dissociation near 80GPa. • Under high pressure, bromine has the same structure changes as iodine. • At pressure higher than 90GPa, small drops in electrical resistance are observed, which show the onset of superconductivity.

  24. Next plan I will perform electrical resistance measurement of solid bromine at high pressure again, Because pressure measurements above 140 GPa may be incorrect.

  25. How to estimate pressure For P < 100 GPa : Ruby Fluorescence(ルビー蛍光法) Ruby produces fluorescence when irradiated by laser. The wavelength of the peak changes with pressure. For P > 100 GPa : Raman Spectroscopy (ラマン分光法) Irradiate diamond with laser. On applying pressure, the vibration of C-C bond in diamond changes, the wavelength of scattered light becomes small. P = 66.9 - 0.5281ν + 3.585×10-4 ν2

More Related