130 likes | 247 Vues
This lesson aims to distinguish between discrete and continuous random variables, identify discrete probability distributions, and construct probability histograms. Students will learn how to compute and interpret the mean as an expected value, as well as calculate the variance and standard deviation of discrete random variables. Key concepts include the definitions and formulas needed for calculations, along with practical examples like rolling dice and family sizes to illustrate the concepts effectively.
E N D
Lesson 6 - 1 Discrete Random Variables
Objectives • Distinguish between discrete and continuous random variables • Identify discrete probability distributions • Construct probability histograms • Compute and interpret the mean of a discrete random variable • Interpret the mean of a discrete random variable as an expected value • Compute the variance and standard deviation of a discrete random variable
Vocabulary • Random variable – a numerical measure of the outcome of a probability experiment, so its value is determine by chance. • Discrete random variable – has finite or countable number of values • Continuous random variable – has infinitely many values • Probability distribution of a discrete random variable – provides all possible values of the random variable and their corresponding probabilities (can be in the form of a table or graph – or a mathematical formula) • Probability histogram – histogram with y values being probability and x axis being the random variable (similar to relative frequency histogram) • Expected value –the mean of a random variable, E(x) • Variance of a discrete random variable – weighted average of the squared deviations where the probabilities are the weights
Rules for a Discrete Probability Distribution Let P(x) denote the probability that the random variable X equals x, then • The sum of all probabilities of all outcomes must equal 1 ∑ P(x) = 1 • The probability of any value x, P(x), must between 0 and 1 0≤ P(x) ≤ 1
Discrete Random Variable - Mean The mean, or expected value [E(x)], of a discrete random variable is given by the formula μx = ∑ [x ∙P(x)] where x is the value of the random variable and P(x) is the probability of observing x Mean of a Discrete Random Variable Interpretation: If we run an experiment over and over again, the law of large numbers helps us conclude that the difference between x and ux gets closer to 0 as n (number of repetitions) increases
Discrete Random Variable - Variance Variance and Standard Deviation of a Discrete Random Variable: The variance of a discrete random variable is given by: σ2x = ∑ [(x – μx)2 ∙ P(x)] = ∑[x2 ∙ P(x)] – μ2x and standard deviation is √σ2 Note: round the mean, variance and standard deviation to one more decimal place than the values of the random variable
Uniform PDF An experiment is said to be a Uniform experiment provided: • The probability of each value of the random variable is equal (like in a six-sided die) • The trials are independent of each other (what happened last does not affect what happens next)
Uniform PDF If X is a value of the uniform random variable, then probability formula for X is 1 P(x) = ------- x = 0, 1, 2, 3, … , n n where n is the total number of discrete values of the random variable x Mean: μx = ∑ [x ∙P(x)] = (1/n)∑ x Standard Deviation: σ2x = ∑ [(x – μx)2 ∙ P(x)] = (1/n) ∑ [(x – μx)2 = ∑[x2 ∙ P(x)] – μ2x = (1/n) ∑ [x2 ] – μx2
Example 1 You have a fair 10-sided die with the number 1 to 10 on each of the faces. Determine the mean and standard deviation. Mean: ∑ [x ∙P(x)] = (1/10) (∑ x) = (1/10)(55) = 5.5 Var: ∑[x2 ∙ P(x)] – μ2x = (1/n) ∑ [x2 ] – μx2 = (1/10) (385) - 30.25) = (38.5 – 30.25) = 8.25 St Dev = 2.8723
Example 2 Below is a distribution for number of visits to a dentist in one year. X = # of visits to a dentist x 0 1 2 3 4 P(x) .1 .3 .4 .15 .05 Determine the expected value, variance and standard deviation. Mean: ∑ [x ∙P(x)] = (.1)(0) + (.3)(1) + (.4)(2) + (.15)(3) + (.05)(4) = 0 + .3 + .8 + .45 +.2 = 1.75 Var: ∑[x2 ∙ P(x)] – μ2x = ∑ [x2 ∙ P(x)] – μx2 = (0 + .3 + .4(4) + .15(9) + .05(16) ) – 3.0625) = 4.05 – 3.8626 = 0.9875 St Dev = 0.9937
Example 3 What is the average size of an American family? Here is the distribution of family size according to the 1990 Census: # in family 2 3 4 5 6 7 p(x) .413 .236 .211 .090 .032 .018 Mean: ∑ [x ∙P(x)] = (.413)(2) + (.236)(3) + (.211)(4) + (.09)(5) + (.032)(6) + (.018)(7) = .826 + .708 + .844 + .45 + .192 + .126 = 3.146
Example 4 You are trying to decide whether to take out a $250 deductible which will cost you $90 per year. Records show that for this community the average cost of repair is $900. Records also show that 10% of the drivers have an accident during the year. If you have sufficient assets so that you will not be financially handicapped if you had to pay out the $900 or more for repairs, should you buy the policy? P(accident) = 0.1 so P(no accident) = 0.9ave repair cost = $900 Yearly cost = $90Expected Yearly with Policy: ∑ [x ∙P(x)] = (.1)(250) + (.9)(0) + 90 = 25 + 90 = $115 Expected Yearly without: ∑ [x ∙P(x)] = (.1)(900) + (.9)(0) = $90
Summary and Homework • Summary • Discrete variables have a finite number of values • Expected value is the mean ∑ [x ∙P(x)] • Variance is ∑[x2 ∙ P(x)] – μ2x • Homework • pg 323-327; 7, 10 – 15, 18, 19, 23, 31, 35