Download
teoria cinetico molecular n.
Skip this Video
Loading SlideShow in 5 Seconds..
TEORIA CINETICO MOLECULAR PowerPoint Presentation
Download Presentation
TEORIA CINETICO MOLECULAR

TEORIA CINETICO MOLECULAR

496 Vues Download Presentation
Télécharger la présentation

TEORIA CINETICO MOLECULAR

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. TEORIA CINETICO MOLECULAR DRA. NELLY LIDIA JORGE

  2. El modelo cinético molecular del gas • La explicación fundamental del comportamiento de los gases recibe el nombre de Teoría cinética de los gases y se basa en diferentes supuestos, la mayoría relacionados con la mecánica clásica y no con la mecánica cuántica. • Los fundamentos de la teoría cinética fueron formulados por L. Boltzmann y J. C. Maxwell en 1860. • El comportamiento físico de los gases puede considerarse como el promedio estadístico de todas las partículas de un gas, esto implica introducir la termodinámica estadística. • Nos enfocaremos en el comportamiento físico de los gases y no en el químico, ya que para este último necesitamos la mecánica cuántica. • Analizaremos el origen de la presión de los gases, veremos la velocidad promedio (de diversas formas), la cantidad de veces que las partículas de un gas chocan entre si, las distancias que recorren entre colisiones y que tan lejos llegan a partir de un punto arbitrario. • Las leyes de los gases y las propiedades de los mismos pueden interpretarse a través de un modelo, según el cual los gases se comportaran como conjuntos formados por un número muy grande de pequeñas partículas, llamadas moléculas, que se mueven y chocan unas con otras y con la paredes del recipiente que contiene el gas.

  3. El Modelo Cinético de los gases • 1. Un gas esta formado por un gran número de partículas, o moléculas, de masa m, que son pequeñas en comparación con las distancias que las separan y el tamaño del recipiente. • 2. Las moléculas están en incesante movimiento al azar • 3. El tamaño de las moléculas es despreciable, sus diámetros son mucho más pequeños que la distancia media recorrida entre colisiones. • 4. Estas partículas diminutas no interaccionan entre si ni con las paredes del recipiente. Es decir no hay fuerzas de atracción o repulsión entre dos cualesquiera partículas o una partícula y la pared. • 5. Las colisiones entre las moléculas o entre las moléculas y las paredes del recipiente son perfectamente elásticas, esto es, ninguna cantidad de energía total cinética traslacional se pierde durante el choque.

  4. Presión de un gas • Se puede calcular la presión que ejercen N´moléculas, cada una de masa m, contenidas en un recipiente de forma cúbica cuya arista tiene una longitud l, sobre la base del modelo cineticomolecular. La presión ejercida por estas moléculas es el resultado de sus choques con las paredes del recipiente. Para mantener fijo, en estas condiciones de equilibrio, un volumen en el equilibrio, es necesario aplicar una presión externa, dirigida hacia el interior, que refuerce la acción de las paredes del recipiente. • Para comenzar, se considera solamente una de las N´moléculas. Sea u su velocidad vectorial, esto es, su velocidad en una determinada dirección.

  5. La velocidad vectorial se puede descomponer en sus componentes ux , uy, uz   las cuales se consideran perpendiculares a las paredes del recipiente, como se representa en la figura 1. • Figura 1 Coordenadas velocidad molecular • y componentes de la velocidad para estudiar la presión de un gas.

  6. Nótese que, por ejemplo, ux , lleva implícita información sobre la dirección y esta puede tomar valores positivos o negativos para indicar que el movimiento es en sentido positivo o negativo. • Concretamente, es el efecto de la componente x de la velocidad de una molécula lo que va a ser considerado ahora. Como resultado de esta componente de velocidad en la dirección x, la molécula choca con una de las paredes (caras) del recipiente, que es perpendicular al eje x, rebota allí y a continuación se desplaza hasta que choca con la pared opuesta. El efecto total de estos impactos con las paredes del recipiente es lo que, de acuerdo con la teoría cinético-molecular, produce la presión del gas. La fuerza ejercida, por los choques de una molécula con una pared del recipiente, se puede calcular con la segunda Ley de movimiento de Newton, que establece que la variación por unidad de tiempo, del impulso de la partícula en una dirección, es igual a la fuerza que actuó sobre la partícula en esa dirección(relación entrevelocidad de cambio de cantidad de movimiento y fuerza.

  7. El impulso con el que la molécula se aproxima a la pared A de la figura 1 es mux.Después del choque, la molécula se mueve alejándose de la pared con lo que ni  uy ni   uzvariarán, pero se invierte el signo de ux y, por lo tanto, el de muxcomo muestra la figura 2. De esta forma el impacto sobre la pared ejerce una fuerza que provoca una variación del impulso, o momento lineal, en dirección perpendicular a la pared, igual a  2mux. • El numero de estos cambios del momento lineal por segundo sobre la cara A es el numero de choque por segundo que la molécula realiza sobre la cara A.

  8. uz Sección de la pared A uy ux final uz uy ux inicial Figura 2. Inversión de ux como resultado del choque con la pared A. Una molécula choca elásticamente con la pared del recipiente.

  9. El cambio de momento lineal debido al choque de una molécula de masa m y velocidad ux sobre la pared del recipiente es: Dpx = mux- (-mux) = 2 mux La fuerza que se ejerce en la pared es: Dp= F1Dt= 2 mux Se puede escribir como: Para todas las moléculas del gas: El valor promedio de la velocidad en la dirección x es para N´ moléculas es:

  10. Así pues, la fuerza total sobre la pared puede escribirse El teorema de Pitágoras relaciona el cuadrado de la velocidad con el cuadrado de sus componentes: En consecuencia, el valor promedio de u2 es: En virtud de que el movimiento es completamente aleatorio, los valores promedio de las componentes de velocidad son iguales entre sí. Entonces, encontramos que:

  11. Así, la fuerza sobre la pared es: Esta expresión nos permite encontrar la presión total sobre la pared: Este resultado muestra que la presión es proporcional al número de moléculas por unidad de volumen y a la energía cinética traslacional promedio de la molécula,

  12. Puesto que la molécula recorre una distancia ux en 1 seg. y dado que la distancia recorrida en dos choques en la cara A es 2l, el numero de choques por segundo sobre la cara A es ux/ 2l. • La variación del momento lineal por unidad de tiempo, esto es, el cambio total por segundo, es entonces • Ésta es la fuerza que ejerce una molécula sobre la cara A. (1)

  13. Puesto que la presión es fuerza por unidad de superficie, la presión ejercida por una molécula sobre la cara A ha de ser: • Donde es el volumen del recipiente. Se puede reconocer en este punto que la presión es la misma en todas las paredes del recipiente, y además actúa sobre todas las paredes en sentido perpendicular a las mismas. Por esa razón, se puede prescindir de la restricción “para la cara A” y de la dirección indicada mediante la notación vectorial. (2)

  14. Así se obtiene que (3) • Considérese ahora, N´ moléculas en lugar de una sola que estén contenidas en un recipiente de forma cúbica. La suma de todas las contribuciones a la presión ejercida por las N´ moléculas se expresa como. • Se puede admitir que todas las moléculas tienen la misma masa, pero el modelo supone que las moléculas se mueven en diversas direcciones y con distintas velocidades; por eso, ux y  han de ser diferentes para cada molécula. (4)

  15. Si el valor medio de de las N´moléculas del gas se designa por   , la ecuación se puede modificar para obtener el valor de la presión necesaria para confinar N´moléculas en un volumen V, lacual es   (5)

  16. Sin embargo, es más adecuado disponer de una relación entre la presión de las N´ moléculas y el valor medio de la velocidad de la molécula en lugar de la componente x de esta velocidad. La relación entre los cuadrados de la velocidad es: • Como debe establecerse teniendo en cuenta la conocida relación que da la combinación de las componentes axiales. Puesto que para un numero grande de moléculas que se mueven en las direcciones permitidas (6) (7)

  17. La ecuación más adecuada que puede establecerse será (8) • Téngase en cuenta que  y  son magnitudes escalares y no vectoriales, es decir, indican cuantía y no direcciones de las velocidades moleculares. • Sustituyendo la ecuación [8] en la [5] se obtiene la relación buscada entre P y  a saber (9) ó

  18. Esta importante ecuación es, en principio, el resultado final del presente razonamiento. En lo que cabe puede conducir a explicar lo que es la presión en base a los postulados cinéticomoleculares. Sin embargo, este resultado no puede compararse con las leyes experimentales de los gases, si bien despues del punto siguiente si.

  19. Interpretación molecular de la temperatura Es posible comprender más profundamente el significado de la temperatura si escribimos la ecuación anterior la escribimos como: Comparándola con la ecuación de estado de un gas ideal: PV = NkBT De aquí encontramos que Podemos despejar la energía cinética molecular como: Puesto que , se concluye que El siguiente teorema, llamado el teorema de la equipartición de la energía, establece que: La energía de un sistema en equilibrio térmico se divide por igual entre todos los grados de libertad.

  20. La energía cinética traslacional de N moléculas es simplemente N veces la energía promedio por molécula, entonces: La raíz cuadrada de se conoce como velocidad cuadrática media de las moléculas (rms, por sus siglas en inglés). Para la velocidad rms tenemos:

  21. Energías cinéticas y temperatura • La energía cinética media de una molécula de gas se representa por . Esta cantidad está relacionada con el cuadrado de la velocidad media por • La ecuación [9]  puede establecerse ahora como • Las propiedades moleculares como   se pueden medir mediante el número de AvogadroNque relaciona el número de moléculasN´con el número de molesn, con la ecuación (10) (11) (12) • La ecuación [11] puede establecerse ahora como: (13)

  22. Además si se introduce el factor  KE para representar la energía cinética de un número de moléculas igual al de Avogadro, se transforma: • Aquí es necesario recordar la ecuación empírica:PV= nRT • Donde al hacer concordar la deducción teórica y la ley experimental, igualando,     con RT    (14) (15) • De ésta forma, si la energía cinética media de traslación de un número de moléculas igual al de Avogadro, esto es, 1 mol, tiene el valor , entonces las leyes de los gases ideales,que están comprendidas en la relación  PV= nRT , deben deducirse de los postulados de la teoría cineticomolecular.

  23. Valores numéricos de las energías y velocidades moleculares • El propósito de este tema es encontrar algunas de las propiedades de las moléculas que componen un gas. Se ha demostrado que los postulados cualitativos del mundo molecular conducen a las leyes de los gases ideales. Pero, más información cuantitativa se alcanza si se tienen en cuenta que la energía cinética de un número de moléculas igual al de Avogadro es: • El valor 8,3143 J grad-1 mol-1, de la constante R, conduce para la contribución de los movimientos  de traslación a la energía, para un mol de cualquier gas a 25 ºC, al resultado

  24. (16) • La energía cinética media de la molécula puede suponerse que es • Dado que gran parte del trabajo en lo sucesivo estará relacionado con la energía de las moléculas y los átomos independientes, es útil introducir una nueva constante k, llamada constante de Boltzmann, que se define como: • La cte de Boltzmann es, por tanto, la constante de los gases por molécula y la energía cinética media por molécula vale: (17) (18)

  25. La energía cinética media de una molécula de cualquier gas a 25 ºC es, • Aunque los valores de las energías cinéticas medias son muy importantes, al principio es difícil apreciarlo por ello es preferible fijar la atención en otra propiedad molecular, estrechamente relacionada con la energía y más fácil de intuir: la velocidad con que las moléculas se desplazan. • La energía cinética de un número de moléculas igual al de Avogadro puede formularse así  • Donde M es la masa molar. El valor del factor cte para la velocidad molecular se obtiene combinando este resultado con el postulado de la teoría cineticomolecular y resulta (19) (20)

  26. La magnitud se conoce como velocidad cuadráticamedia (V.C.M.), la cual significa que cada velocidad se ha de tomar su valor elevado al cuadrado, se han de promediar los cuadrados de éstas velocidades y se toma la raíz cuadrado de este valor medio. Esta forma de definirla conduce  a un resultado que es diferente de la verdadera velocidad media, pero sólo en un 10%.Los valores de que se deducen de la ecuación (20) pueden considerarse como indicativos de las velocidades medias. • Debe señalarse también que así como las velocidades moleculares se pueden interpretar en función de sus componentes, referidos a tres direcciones perpendiculares, en la forma • También es posible fijar el valor de la energía cinética media, en la forma (21)

  27. Se deduce ahora, puesto que esta tres componentes de la energía media son iguales, que, , lo que conduce a que: • Las tres direcciones perpendiculares, sobre las que pueden descomponerse las velocidades y las energías, se llaman grados de libertad. De esta forma se puede establecer que la energía media de traslación de una molécula, por grado de libertad, es   1/2kT (22)

  28. Distribución de las velocidades monodimensionales moleculares • La relación básica que permite operar en aquellos problemas en los que se ha de tener en cuenta el número de moléculas que tienen diferentes velocidades, o energía es la distribución de Boltzmann. • De acuerdo con el modelo sobre el que basa la teoría cineticomolecular, las moléculas de un gas se mueven con  una gran diversidad de velocidades y direcciones, esto es, con muy variadas velocidades vectoriales. • Si estas velocidades se representan en un diagrama esquemático, Figura 3 cada punto representa, por su distancia al origen, la cuantía de la velocidad, esto es, el valor de la velocidad de la partícula y, por su dirección y sentido respecto al origen, la dirección y sentido en que la partícula se mueve. Para una mejor comprensión, se agrega al vector velocidad una punta de flecha.

  29. Figura 3. Velocidades moleculares. Cada valor de su magnitud y dirección se representa por la longitud y dirección de las flechas.

  30. Puesto que los gases se comportan en forma similar en todas direcciones, es decir desde este punto de vista isótropo los diagramas análogos a los de la figura 3,  para un número suficientemente grande de moléculas, deben ser los mismos para todas las direcciones. La naturaleza de la variación de la densidad de los puntos representativos de las velocidades, considerado a partir del origen, es la distribución de las velocidades moleculares.En este punto se estudia sólo la distribución de velocidades a lo largo de una determinada dirección x. En relación con la figura 4 esto requiere determinar la relación entre el número de puntos dN, situados en el elemento de volumen que se muestra en la figura 4 y el número total N de puntos velocidad. • Esto es, se trata de encontrar el valor de la fracción dN/Nde puntos o moléculas que tienen velocidades comprendidas en el intervalo de velocidades uxa ux + dux . De acuerdo con la forma de la distribución Boltzmann, esta fracción es proporcional a un factor exponencial, cuyo exponente es la relación de la correspondiente energía cinética   y kT. En forma explícita (23) Donde A es la constante de proporcionalidad

  31. Figura 4. Los dos elementos de volumen que en conjunto contienen todas las moléculas que se mueven con velocidades comprendidas entre ux y ux+dux. ux ux

  32. Esta constante se puede evaluar aceptando que la integración del miembro derecho de la ecuación (23), a todos los posibles valores de ux, o sea,  desde ux=0  hasta  ux =  ,debe comprender a todos los puntos velocidad. • Y la constante de proporcionalidad resulta ser, • Si se sustituye el denominador de (25) se convierte en una integral (24) (25) El valor de esta integral es precisamente, y por lo tanto (26)

  33. (27) • Finalmente, la ecuación que da la distribución monodimensional para una porción de gas conN moléculas, se puede formar como, • La representación gráfica de esta función de distribución monodimensional se muestra para dos temperaturas en el caso del nitrógeno, en la figura 5 a. • La distribución de las componentes x de la velocidad vectorial, esto es, la distribución conjunta de los valores de las velocidades y de sus direcciones, puede mostrarse también sin dificultad. La distribución en el sentido +x será la misma que en el sentido –x, y las curvas de distribución de velocidades vectoriales se pueden dibujar a partir de las curvas de distribución de velocidades de la figura 5 a, dividiendo los valores de las ordenadas por dos e incluyendo curvas para la distribución en el intervalo positivo y negativo de las velocidades vectoriales, como se muestra en la figura 5 b.

  34. La expresión analítica correspondiente a las curvas de distribución de las componentes x de velocidad vectorial es: (28) • Figura 5. Distribución de:(a)velocidades (módulos del vector ux). (b)velocidades en la dirección x, para las moléculas del N2 a 298 y 1500 K(distribución de las velocidades vectoriales monodimensionales).

  35. Distribución de las velocidades tridimensionales moleculares • En el problema monodimensional, que ha sido resuelto antes, se estudió la distribución de la densidad de puntos a lo largo de una dirección cualquiera, por ejemplo, a lo largo del eje x. De nuevo se observa en la figura 3, aunque sólo se representan unos pocos puntos, que el número de puntos contenidos en un elemento de volumen duxen la figura, disminuye a medida que el elemento se desplaza en cualquier dirección a partir del origen. De forma similar, como es lógico, las distribuciones monodimensionales a lo largo de los ejes y y z, son uy y uz. • Estas distribuciones monodimensionales pueden, en realidad, combinarse para dar la fracción del numero de moléculas que tienen componentes de velocidad comprendidos entre ux yux + dux, uy y uy + duy, y uz yuz + duz. Ésta es igual a la fracción de puntos que se encuentran contenidos en el elemento rectangular de volumen, que aparece sombreado en la figura 6 la cual se obtiene analíticamente como producto de las fracciones del número de moléculas que están comprendidas en los adecuados elementos de volumen de los ejes perpendiculares, esto es,

  36. (29) (29) • Este resultado suministra la distribución de las velocidades moleculares, la cual da cuenta de la densidad de puntos en cada uno de los elementos de volumen, análogos al de la figura 6. Figura 6. Forma de combinar los elementos de volumen para reducir (dN/N)dux duy duz

  37. Figura 7. Representación de las velocidades moleculares y del elemento de volumen que se utiliza para obtener la distribución tridimensional de la cuantía de las velocidades moleculares.

  38. La ecuación que expresa la distribución de Maxwell-Boltzmann está representada en el caso del N2 y para dos temperaturas en la figura 8. La velocidad media tiene un valor que, como se vera a continuación, es parecido al que antes fue estimado como velocidad cuadrática media. Se observa también que a bajas temperaturas las moléculas tienden a poseer velocidades que están contenidas en un intervalo relativamente estrecho, mientras que a  temperaturas elevadas la distribución es más amplia y el máximo de la curva de distribución tiende a situarse en un valor más alto de la velocidad

  39. Figura 8. Distribución de las velocidades moleculares en el N2 a 298 y 1500 K. c, cm/seg

  40. El conocimiento de la curva de distribución permite el cálculo del valor medio de cualquier magnitud que derive de las velocidades moleculares. Por ejemplo, la distribución de Maxwell-Boltzmann puede utilizarse para calcular la velocidad cuadrática media, que se puede obtener por otro camino, relacionado con lo establecido en un punto anterior, con lo que se obtiene el valor, • Para obtener estos valores medios a partir de la ley de distribución se multiplica el número de moléculas que tiene un determinado valor de la magnitud en cuestión por el valor de esta magnitud; y finalmente se divide por el número total de moléculas. Así , se obtiene mediante la relación • Se obtiene el resultado (31)

  41. Con lo que se obtiene para   , que es el mismo resultado con las ecuaciones del punto anterior, a partir del tratamiento cineticomolecular. • De la misma forma se obtiene la velocidad media definida como • Al introducir la ley de distribución y resolver la integral se obtiene el resultado • Por último, algunas veces es necesario conocer el valor de la velocidad mas probable, esto es, la velocidad que corresponde al máximo de las curvas de la figura 8. Para determinar esta velocidad solo es necesario derivar la ecuación de la ley de distribución, igualar la derivada a cero y determinar el valor de u que se deduce de esta última condición. De esta forma, si α representa la velocidad mas probable, resulta (32) (33)

  42. Estas tres velocidades, la velocidad cuadrática media, la velocidad media y la velocidad más probable, no son muy diferentes ya que se guardan relación • Cualquiera de estas tres velocidades, indistintamente, suministra suficiente información sobre las velocidades moleculares en cualquier problema. Cuando sea necesario un conocimiento mas detallado de la distribución de las velocidades moleculares deberá hacerse referencia  a la ley de distribución o a gráficos como el de la figura 8 (34)

  43. Como una consecuencia de la distribución de Boltzmann se ha alcanzado un mejor conocimiento  sobre las velocidades con que se mueven las moléculas, el que se logró de la comparación realizada al principio entre las relaciones y • Sin embargo, en lugar de obtener entonces la distribución detallada de las velocidades moleculares, solo se obtuvo el valor de, pero a quedado demostrado que esa aproximación es consistente con los resultados de la teoría cineticomolecular.

  44. Recorridos libres medios, diámetros de colisión y números de choques • Los razonamientos de tipo cineticomolecular de la sección precedente, no tienen en cuenta que constantemente las moléculas de un gas están chocando unas con otras. La deducción de la presión ejercida por un gas, se basa en la idea de que las moléculas rebotan una y otra vez entre las paredes del recipiente pero no es necesario aceptar que para muchas presiones del gas una molécula puede, en realidad, chocar muchas veces con otras moléculas al atravesar el recipiente. Sin embargo se puede mostrar sin dificultad que dado que con estos choques no varía el valor efectivo del momento lineal de las moléculas que chocan en la dirección que se está considerando, estos choques no afectan la validez del razonamiento seguido para demostrar el valor de la presión del gas.

  45. Este hecho implica que no se puede obtener ninguna información acerca de aquellos choques moleculares determinados con razonamiento de tipo teórico, como el de la sección para deducir la presión de un gas. • Tres problemas se pueden plantear acerca de las características de los choques intermoleculares: ¿Cuántos caminos, por término medio, recorre una molécula entre dos colisiones? ¿Cuántos choques por segundo, por término medio, realiza una molécula?  Y ¿Cuántos choques por segundo ocurren en un determinado volumen de un gas? Las lagunas que existen en el conocimiento del mundo molecular se ponen de manifiesto cuando, de verdad, se quiere encontrar respuesta a estas preguntas. • Las respuestas a estas tres preguntas están relacionadas con una propiedad molecular. Esta propiedad es el diámetro de las moléculas del gas. El empleo de una única magnitud, este diámetro, para definir el tamaño de las moléculas no es mas que un supuesto muy esquemático, que presupone que las moléculas son esféricas y, además, que el tamaño efectivo de las mismas es independiente de la energía que intercambian en un choque molecular. Las moléculas se consideran como esferas rígidas, que no presentan atracciones mutuas.

  46. Considérese en la figura 9 una molécula cualquiera A que se mueve en la dirección que allí se indica. Si la velocidad de la molécula es  se desplazará una distancia cm en 1 seg. Por tanto, si se supone que solo Ase mueve y que todas las demás moléculas permanecen en reposo estacionario, la molécula Achocara durante 1 seg con todas las moléculas que tienen sus centros dentro del cilindro, dibujado en la figura 9. El volumen del cilindro, cuyo radio es igual al diámetro molecular es, • El numero de moléculas que existen en el cilindro es  , donde N* es el numero de moléculas por centímetro cúbico.

  47. El recorrido libre medio, esto es, la distancia entre los choques, es la longitud   del cilindro dividida por el número de choques ocurrido mientras la molécula lo atraviesa longitudinalmente. De esta forma, si Lse adopta para representar el recorrido libre medio, (35) • Un cálculo más riguroso demostraría que este resultado no es correcto del todo. La hipótesis de que la molécula A es la única que se mueve, equivale a suponer que se ve con una velocidad relativa   respecto de las otras moléculas con las que choca. En realidad, como la figura 10 sugiere, si todas las moléculas se moverían inicialmente con la velocidad   , pueden ocurrir todos los tipos de choques desde choques con rebote donde las velocidades relativas de ambas moléculas difieren muy poco, a choques frontales en los que la velocidad relativa sería 2  .