300 likes | 452 Vues
Explore the extensive framework of Predicate Logic, which encompasses the rules and strategies of Sentential Logic. This guide offers a detailed overview of derivations, translations, and grading policies for assessments in logic. It features numerous examples that illustrate foundational concepts, including existential and universal quantifiers, and demonstrates how to perform derivations in Predicate Logic. Ideal for students preparing for exams, this resource aids in mastering the transition from Sentential Logic to Predicate Logic, fostering a clearer understanding of logical reasoning.
E N D
INTRO LOGIC DAY 22
Overview + + + • Exam 1: Sentential Logic Translations (+) • Exam 2: Sentential Logic Derivations • Exam 3: Predicate Logic Translations • Exam 4: Predicate Logic Derivations • Exam 5: (finals) very similar to Exam 3 • Exam 6: (finals) very similar to Exam 4
Grading Policy • When computing your final grade, • I count your four highest scores. • (A missed exam counts as a zero.)
Predicate Logic Subsumes Sentential Logic • Every rule of Sentential Logic • is also a rule of Predicate Logic. Every strategy of Sentential Logic is also a strategy of Predicate Logic. • CD • ID • O • O • etc. • : • : • : • : & • etc.
SL-Example 1 if no one is H, then k is not H (1) : xHx Hk CD (2) xHx As (3) :Hk D (4) Hk As (5) : DD (6) ??? 2,O (?) ???
SL-Example 2 if everyone is un-H, then no one is H (1) : xHx xHx CD (2) xHx As (3) :xHx D (4) xHx As (5) : DD (6) ??? 2,O (7) ??? 4,O (?) ???
SL-Example 3 • if someone is F or H, then someone is F or someone is H (1) : x(Fx Hx) (xFx xHx) CD (2) x(Fx Hx) As (3) :xFx xHx D (ID) (4) [ xFx xHx ] As (5) : DD (6) xFx 4,O (7) xHx 4,O (8) ??? 2,O (9) ??? 6,O (10) ??? 7,O (?) ??
SL-Example 4 • if everyone is F and H, then everyone is F and everyone is H (1) : x(Fx & Hx) (xFx & xHx) CD (2) x(Fx & Hx) As (3) :xFx & xHx &D (4) : xFx ?? (?) ?? ?? (?) ?? ?? (?) : xHx ?? (?) ?? ?? (?) ?? ??
Rules of Predicate Logic (overview) Logical operators RULES IN OUT OUT & &I &O &O I O O CD O O UD O O I O O
Universal-Out (O) any variable (z, y, x, w …) ––––– any formula replaces any name (a, b, c, d, …) numerous restrictions (later)
O – Example 1a 1. remove quantifier x H x a 2. choose name a 3. substitute name for variable
O – Example 1b x 1. remove quantifier x H b 2. choose name b 3. substitute name for variable
O – Example 1c x 1. remove quantifier x H c 2. choose name c 3. substitute name for variable
O – Example 2a x a ) ( x x F a H a a 1. remove quantifier 2. remove parentheses 3. choose name 4. sub name for variable
O – Example 2b x b ) ( x x F b H b b 1. remove quantifier 2. remove parentheses 3. choose name 4. sub name for variable
Derivation Example 1 every F is un-H ; k is F / not every F is H (1) x(Fx Hx) Pr (2) Fk Pr (3) : x(Fx Hx) D (4) x(Fx Hx) As (5) : DD (6) Fk Hk 1, O (7) Fk Hk 4, O (8) Hk 2,6, O (9) Hk 2,7, O (10) 8,9, I
Example 2 • every FR’s him/herself ; j doesn’t R anyone • / j is not F (1) x(Fx Rxx) Pr (2) xRjx Pr (3) : Fj D (4) Fj As (5) : DD (6) Fj Rjj 1, O (7) Rjj 2, O (8) Rjj 4,6, O (9) 7,8, I
Example 3 if anyone is F, then everyone is H j is F / k is H (1) x { Fx yHy } Pr (2) Fj Pr (3) : Hk DD (4) Fj yHy 1, O (5) yHy 2,4, O (6) Hk 5, O
Existential-In (I) any name (a, b, c, d, …) any formula ––––– replaces any variable (z, y, x, w …) numerous restrictions (later)
I – Example 1 x F x a x 1. select name/variable 2. replace name by variable 3. restore missing parentheses (if any) there aren’t any 4. insert quantifier
I – Example 2 x ( F x a & H x a ) x x 1. select name/variable 2. replace name by variable 3. restore missing parentheses (if any) 4. insert quantifier
I – Example 3 x R k x k x x x 1. select name/variable 2. replace name by variable 3. restore missing parentheses (if any) there aren’t any 4. insert quantifier
I – Example 4 x x R k k x 1. select name/variable 2. replace name by variable 3. restore missing parentheses (if any) there aren’t any 4. insert quantifier
I – Example 5 x R k x k x 1. select name/variable 2. replace name by variable 3. restore missing parentheses (if any) there aren’t any 4. insert quantifier
Derivation Example 5 • every F is H ; k is F / someone is H (1) x ( Fx Hx ) Pr (2) Fk Pr (3) : xHx DD O (4) Fk Hk 1, O (5) Hk 2,4, I (6) xHx 5,
Example 6 • if someone is F then everyone is Hk is F / j is H (1) xFx xHx Pr (2) Fk Pr (3) : Hj DD I (4) xFx 2, O (5) xHx 1,4, O (6) Hj 5,
Example 7 • every F R’s him/herselfk is F / someone R’s k (1) x(Fx Rxx) Pr (2) Fk Pr (3) : xRxk DD (4) Fk Rkk 1, O (5) Rkk 2,4, O (6) xRxk 5, I
Example 8 • everyone who R’s someone is R’ed by everyone • k R’s herself • / j R’s k (1) x { yRxy yRyx } Pr (2) Rkk Pr (3) : Rjk DD (4) yRky yRyk 1, O (5) yRky 2, I (6) yRyk 4,5, O (7) Rjk 6, O