400 likes | 591 Vues
Laboratorio di Reti Informatiche. IP Routing A. Laina laina@cisi.unito.it. Terminologia IP: Internet Protocol protocollo di comunicazioni tra reti (locali) Routing: da to route instradare (anche ruotare) Ambito
E N D
Laboratorio di Reti Informatiche IP Routing A. Laina laina@cisi.unito.it
Terminologia IP: Internet Protocol protocollo di comunicazioni tra reti (locali) Routing: da to route instradare (anche ruotare) Ambito Autonomous System (AS, sistema autonomo) insieme di reti gestite da una singola organizzazioneex: GARR Internet: tutte le AS “integrate” da BGP-4
Modalità di routing CIDR Classless Interdomain Routing Network classless • Scopo • Assegnare network logici alle reti fisiche • Distribuire le informazioni per rendere raggiungibile i network
IS LAN ES ES IS LAN ES
LAN a livello 3: 1+ network number (prefissi) prefisso: 32 bits + lunghezza (L) e i bits oltre i primi Lmessi a 0 ex: 10101100.11110000.01010011.10000000/27 = 172.240.83.128/27 (172.240.83.128 255.255.255.224) Notazione: A.B.C.D/L A, B, C, D Î{0¼255}L Î{0¼32}
Prefissi particolari:· 127.0.0.0/8 loopback· 10.0.0.0/8 privati 172.16.0.0/12 192.168.0.0/16· 239.0.0.0/8 multicast privati· 0.0.0.0/0 Internet
Supernet (~ aggregato): A¢.B¢.C¢.D¢/L¢³ A.B.C.D/L se L¢ £ L e i primi L¢ bits sono uguali ex: 172.240.83.0/24 ³ 172.240.83.128/27 10101100.11110000.01010011.00000000/24 10101100.11110000.01010011.10000000/27 Subnet (sottorete): A¢.B¢.C¢.D¢/L¢£ A.B.C.D/L se A.B.C.D/L ³ A ¢.B ¢.C ¢.D ¢/L ¢ ³ è una relazione d’ordine parziale
Proprietà: • 0.0.0.0/0 ³ A.B.C.D/L • ················ • ! A.B.C.D/L come in 2. con L massimosummary network (riassume i prefissi) • Non tutti i network IP corrispondono a reti locali (fisiche)
172.240.83.192/27 172.240.83.160/27 172.240.83.128/27 172.240.83.128/2710101100.11110000.01010011.10000000/27 172.240.83.160/2710101100.11110000.01010011.10100000/27 172.240.83.192/2710101100.11110000.01010011.11000000/27 summary172.240.83.128/2510101100.11110000.01010011.10000000/25
Riassumendo prefissi, si diminuisce la quantità di da elaborare.Un router Internet BGP-4 con full routes contiene informazioni per 55000-60000 prefissi. Suddividere un prefisso in prefissi più piccoli permette di delegare la gestione di una sottorete.
Indirizzi IP A.B.C.D./L = yy…yy ¹ 00…00 networkyy…yy ¹ 11…11 direct broadcast In un network /L (L £ 30) si possono assegnare indirizzi IP “utilizzabili” Indirizzi unicast A {1,…,223} multicast A {224,…,239} Limited broacast 255.255.255.255
130.192.197.0/26 Internet (60.1/30) 60.2/30 33/27 1/30 17/29 5/30 PAI PBI I 2/30 6/30 34/27 62/27 9/30 10/30 22/29 A B PAB 18/29 35/27
PAI 0/30 0,1,2,3 PBI 4/30 4,5,6,7 PAB 8/30 8,9,10,11 B 12/29? 12=00001100 NO!!! B 16/29 16,17,…,22,23 (12/30 non usato) A 24/27? 24=00011000 NO!!! A 32/27 32,33,…,62,63 (24/29 non usato) 130.192.197.0/26 non è associato ad una LAN fisica ma le riassume tutte.
Alcuni “trucchi” per assegnare i prefissi • Assegnare i prefissi in modo progressivo in ordine sempre crescente o sempre decrescente della dimensione dei network • Raggruppare prefissi di dimensione inferiore in modo da costituire blocchi di dimensioni simili • Se un prefisso contiene N indirizzi (senza –2), il valore numerico deve essere un multiplo di N (in notazione decimale basta considerare solo uno dei 4 numeri e dividere N opportunamente
Ver 0100 per IPv4HL in unità di 32 bits (lw o dw)TOS ora chiamato anche DSCPTLen in bytes (max 64K) header + dataID id del dtg, identifica i frammentiFlags (M)ore (F)rag|(D)on’t (F)rag|Unused MF=1 su tutti I frammenti tranne ultimoFO in unità di 8 bytes, posizione relativa nel datagramma originaleTTL “durata” di vita del datagrammaProt identificativo del protocollo in Data ICMP=1, TCP=6, UDP=17, OSPF=89HC Controllo di integrità headerOpt sezione per opzioni (source routing, trace, timestamps) Pad dimensione campo Opt multiplo di 32 bits
Frame Ethernet Ethernet II T/L = type (protocollo in data)802.3 T/L = length (di data)T/L (hex) 0000-05DC 802.3 0800 IPv4 0806 ARP 6004 LAT 8035 RARP MTU IP = 65536 (64K)MTU Eth = 1500 frammentazione per i datagrammi lunghi
Dest e Src sono indirizzi MAC 48 bits Conversione indirizzi IP MAC Unicast: protocollo ARP Broadcast: FFFF:FFFF:FFFF Multicast: 0100:5Exx:xxxx 28 bits 23 bits eliminando i primi 5
Modulo IP Path Determination IP Forwarding Sorgenti IP Dest IP
Internet (60.1/30) 60.2/30 33/27 1/30 17/29 5/30 PAI PBI I 2/30 6/30 34/27 62/27 9/30 10/30 22/29 B A PAB 18/29 35/27 AP AP AP AP TR TR TR TR NW NW NW NW DL DL DL DL
Modulo Path Determination I Ogni modulo IP deve avere un’idea più o meno “completa” di come siano disposti i prefissi. Quella parte del software che si occupa di questo prende il nome di modulo di “Path Determination”. Costruisce un database, chiamato tabella di routing, che contiene tutte le informazioni messe a disposizione del modulo IP. Per ogni prefisso destinazione, si stabiliscono uno o più percorsi “ottimali” e si distribuisce (parzialmente) l’informazione a tutti i sistemi coinvolti. I precorsi devono essere “coerenti” tra di loro. Longest Match: una sottorete (prefisso più lungo) ha la precedenza sui suoi supernet
Informazione per ogni prefisso: • indirizzo next hop • interfaccia di uscita • Tabella di routing AP TR lo NW fisiche DL
Ex: pc con una interfaccia Ethernet quasi sempre anche: La tabella di routing viene costruita mediante varie sorgenti di informazione non necessariamente concordi tra di loro (vince la fonte più “attendibile”). Ogni fonte può a sua volta dare indicazioni contrastanti. Non ci sono standard per definire l’affidabilità delle fonti, ogni fabbricante usa uno schema proprio.
Ex: Cisco IOS “Attendibilità” = Administration distance 0…255 prefissi interfacce attive 0 statiche 1 EBGP 20 EIGRP 90 OSPF 110 RIP 120 IBGP 200 sconosciuto 255 Prefissi interfacce attive 35/27 35/32 lo 32/27 eth0
Statiche = direzioni configurate manualmente default gateway 35/27 0.0.0.0/0 62 Si possono usare interfacce al posto del next hop Questi due tipi di sorgenti di informazione sono sufficienti per la maggior parte degli ES ma non per gli IS, tranne i più periferici e meno collegati.
Sono sorgenti molto stabili, in certi casi “troppo” stabili perchè richiedono di intervenire su molti sistemi se si modifica la topologia delle LAN. Non sono le più adatte ad un sistema che compensi automaticamente guasti e nuovi allacciamenti. Ex 35/27 35/32 lo 32/27 eth0 0.0.0.0/0 62 ……… 17/29 17/32 lo 16/29 eth0 0.0.0.0/0 22 ………
A 2/32 lo 0/30 eth0 9/32 lo 8/30 eth1 62/32 lo 32/27 eth2A 2/32 lo 0/30 eth0 9/32 lo 8/30 eth1 62/32 lo 32/27 eth2 16/29 10 4/30 1 4/30 10 0.0.0.0/0 1 ………
B 6/32 lo 4/30 eth0 10/32 lo 8/30 eth1 22/32 lo 16/29 eth2B 6/32 lo 4/30 eth0 10/32 lo 8/30 eth1 22/32 lo 16/29 eth2 32/27 9 0/30 5 0/30 9 0.0.0.0/0 5 ………
Modulo Forwarding Per ogni datagramma,si cerca nella tabella di routing di ogni sistema la coppia (IPnh, ifexit) (ifexit = interfaccia di uscita). Si usa il seguente algoritmo con i datiiniziali IPnh = IPdest e ifexit = null. • IPnh IP/32 • Costruire la lista (anche vuota) dei supernet con L massimodi 1. esaminando la tabella di routing. • Se, ad un supernet, è associata una interfaccia if ifexit = if.Se, invece, è associato un IP IPnh = IP e per questa coppia si riparte da 1.
Si presentano 3 casi mutuamente esclusivi • La lista è vuota. Il datagramma viene scartato e, se è il caso, viene spedito un ICMP a IPsorgente. • La lista contiene una singola coppia. Il datagramma viene inviato alla corrispondente interfaccia e da questa ad IPnh senza modificare gli indirizzi dell’intestazione. • La lista contiene più di una coppia. Se il datagramma è un unicast o un broadcast, viene scelta una coppia e si procede come al punto precedente. Se invece è un multicast, lo si replica su tutte le coppie. • Tranne configurazione particolare, un broadcast di livello 2, ricevuto da una interfaccia viene spedito solo ai livelli superiori.
Ex: Trasmissione datagramma 35 17, frame Ethernet II Percorso 35 A B 17Ipotesi ARP: 130.192.197.xy 5555:55AB:CDyx 130.192.197.35 5555:55AB:CD53 130.192.197.2 5555:55AB:CD20 35 IP: S = 35 D = 17 TTL = 64 HC = x1 E: S = 53 D = 26 FCS = y1 A IP: S = 35 D = 17 TTL = 63 HC = x2 E: S = 90 D = 01 FCS = y2 B IP: S = 35 D = 17 TTL = 62 HC = x3 E: S = 22 D = 71 FCS = y3 17
Ex: Trasmissione datagramma 35 23 (direct broadcast), frame Ethernet II Percorso 35 A B 23ARP come esempio precedente 35 IP: S = 35 D = 23 TTL = 64 HC = x1 E: S = 53 D = 26 FCS = y1 A IP: S = 35 D = 23 TTL = 63 HC = x2 E: S = 90 D = 01 FCS = y2 B IP: S = 35 D = 23 TTL = 62 HC = x3 E: S = 22 D = FFFF:FFFF:FFFF FCS = y3 17…22
Modulo Path Determination II I sistemi di configurazione manuale non sono ottimali se ci sono cambiamenti di topologia nelle reti. 60.2/30 1/30 5/30 PAI PBI I 2/30 6/30 62/27 9/30 10/30 22/29 B A PAB Interruzione a livello fisico.
A B I2/32 lo 6/32 lo 60.2/32 lo0/30 eth0 4/30 eth0 60.0/30 eth09/32lo10/32 lo 1/32 lo8/30 eth18/30 eth1 0/30 eth162/32 lo 22/32 lo 5/32 lo32/27 eth2 16/29 eth2 4/30 eth2 16/29 1032/27 98/30 24/30 1 0/30 5 8/30 64/30 100/30 9 16/29 60.0.0.0/0 1 0.0.0.0/0 5 32/27 2 0.0.0.0/0 60.1
Protocolli di Routing Sistemi automatici di scambio di informazione dei network.Si “accorgono” del cambiamento di stato delle interfacce e della reale connettività a livello 2 (keep alive). Le informazioni si propagano a velocità finita tempi di convergenza non nulli (possono essere lunghi) Due famiglie (rispetto all’AS): Interno: RIP, (E)IGRP, OSPF, IS-IS Esterno: EGP, BGP-4
Terminologia Metrica (metric): valore numerico associato ai prefissi per quantificarne il grado di preferenza. Il significato dipende dal protocollo Convergenza: processo che porta tutti i router ad avere tabelle di routing consistenti (stato stazionario) Tempo di convergenza: il periodo temporale che intercorre mentre il sistema di router passa da uno stato stazionario (e consistente) ad un altro Aggiornamento: metodo con il quale vengono condivise le informazioni sui prefissi
RIP e IGRP (R)outing (I)nformation (P)rotocol, standard di Internet(I)nternet (G)ateway (R)outing (P)rotocol, proprietario Cisco Tipo Distance Vector: gli aggiornamenti contengono “vettori” della forma (distanza, direzione). Aggiornamenti periodici: l’intera tabella di routing di ogni singolorouter viene speditaperiodicamente a tutti i router connessi. I router non sincronizzano gli aggiornamenti tra di loro. RIP 30 sec, IGRP 90 sec.
Metrica: RIP numero di hop per raggiungere la destinazione. IGRP combinazione (configurabile) di banda, ritardo, carico e affidabilità di ogni collegamento; si sommano i valori ottenuti per tutti i collegamenti necessari per arrivare al prefisso di destinazione. Durata di vita dei prefissi: ogni riga della tabella di routing a cui non corrisponde una interfaccia sul router stesso, ha una durata di vita finita (di solito tra 3 e 6 aggiornamenti). Se il router non riceve un aggiornamento con informazioni sul prefisso entro questo periodo, la riga viene eliminata, altrimenti la durata di vita viene prorogata. convergenza anche in presenza di guasti.
B A Split horizon (facoltativo): gli aggiornamenti di A verso B non contengono le righe il cui next hop è B (perchè è stato B a comunicare ad A questa informazione). Permette di evitare routing loop “semplici”. Una variante (split horizon with poisoned reverse) prevede di includere anche questi prefissi ma dichiarandoli irraggiungibili (= distanza “infinita”).
C D B A Counting to infinity: si considera come distanza infinita un valore finito (RIP 16 hop, IGRP 255 hop). In un loop come sopra l’informazione sbagliata viene eliminata quando, dopo successivi aggiornamenti, l’hop count raggiunge “infinito”.