1 / 35

A Software Platform for Nanoscale Device Simulation and Visualization

Google: " nanofem platform". A Software Platform for Nanoscale Device Simulation and Visualization. Marek Gayer and Giuseppe Iannaccone ACTEA 2009 - Conference on Advances in Computational Tools for Engineering Applications

Télécharger la présentation

A Software Platform for Nanoscale Device Simulation and Visualization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Google: "nanofem platform" A Software Platform for Nanoscale Device Simulation and Visualization Marek Gayer and Giuseppe Iannaccone ACTEA 2009 - Conference on Advances in Computational Tools for Engineering Applications Notre Dame University, Faculty of Engineering, Zouk Mosbeh, Lebanon, July 15 – July 17, 2009

  2. Goals of NanoFEM platform • Create software platform for Technology CAD device simulation based on FEM • Should be flexible & modifiable (research) • Interactive features: Geometry, meshing and visualization with user interface • Separation of IT (software) and physics • Ability to run simulations on remote servers • Able to run on Windows, Linux, Mac OS X • Extendible; users should be able to develop for the platform writing own modules • Performance

  3. Finite Element Method • Finding solution for Partial Differential equations for evaluation of characteristics (e.g. potential) • Discretizes continuum (i.e. modeled object) into finite number of elements – e.g. triangles, tetrahedron • Characteristics are determined in the nodes of the element • Solving of linear systems • Complex to design and implement, solid mathematical and informatics understanding required for high performance

  4. 3D Finite Element Mesh • Suitable discretization of continuous domain to simple volume cell elements • Partial differential equations (PDE’s) can be replaced by system of non-linear algebraic equations • Very complex to create code to generate FEM mesh on arbitrary structures • Mesh need to be at least Delaunay mesh • Tetrahedrons

  5. Related solutions / approaches • Commercial codes(Synopsis, Silvaco, etc.) • Disadvantages: limited extendibility, modifications • Free codes 2D, 3D: • Archimedes, nextnano • Free Meshers - NETGEN, Tetgen • Existing simulation frameworks • Gmsh, Calculix, Salome Platform, Orcan, • Finite Element Solvers • FEniCS/DOLFIN, Libmesh, Getfem++, Rheolef, Tahoe, OOFEM.org, OFELI

  6. Transistor modeled in NETGEN

  7. Gmsh – Mesh of transistor + Postprocessing (tutorial dataset)

  8. Components of NanoFEM platform • SALOME 3.2.6 supports limited number of OS’s => • Developed as a VmWare image with: • Debian Linux 3.1 (codename Sarge) • SALOME 3.2.6 • FEniCS/DOLFIN 0.7.1 • MeshAPI – lib. for our FEM module/component • Component and additional codes for SALOME • KDevelop for development • Additional tools (Krusader, …) • Running on VmWare Server 1+ or Workstation 6+ • Eventual distribution by providing this VmWare image

  9. NanoFEM platform modelling approach • Salome Platform • MeshAPI with DOLFIN/FEniCS

  10. SALOME platform (LGPL) www.salome-platform.org • SALOME(LGPL) is a free software that provides a generic platform for Pre and Post-Processing for numerical simulation. • Interactice geometry modelling, meshing • Very good user interface (Qt4) • Visualization (2D and 3D graphs) • Can use Python scripting to replace or assist GUI: all functionalities are also accessible through the programmatic integrated Python console • Modular architecture, we can create own modules • Components can run on remote servers (CORBA) • Exchanging data: MEDMEM API, .HDF, .MED • Much more powerful then any other open source finite element component/software we found

  11. SALOME platform modular architecture

  12. FEniCS/ DOLFIN – (L)GPLwww.fenics.org • Free finite element library and solver • Supports both direct and iterative solvers (LU, Krylov solvers) • Uses PETSc and uBLAS libraries for systems of linear/nonlinear equations => high performance linear algebra • Automatic generation of finite elements, evaluation of variational form assembly of matrices for FEM – linear systems • Support for general families of finite elements, (Lagrange, BDM, RT, BDFM Nedelec and Crouzeix-Raviart elements) • No deeper knowledge about FEM method is needed to use and develop • Eigenvalue problems with SLEPSc • Simple and intuitive C++ object interface

  13. Our SALOME/DOLFIN bridge MeshAPI • Core – mesh, fields, groups • Linear-Nonlinear PDE classes • Selection from Krylov solver methods and preconditioners • XML material database (SAX parser) • Boundary conditions • Inherited MeshAPI based solvers • Wrappers for SALOME platform

  14. MeshAPI – mesh, fields, groups • Reading Salome mesh from files .med files (MEDMEM API) • Processing mesh coordinates and connectivities • Processing groups of mesh (can be defined in SALOME editor) • Passing this information to DOLFIN (to build mesh in memory) • Providing core fields (such as Source, Flux, Potential, some visual debug fields) • Additional methods to work with mesh and fields • Control of storing of core and custom fields to .MED files • Clean code design in strictly object oriented C++

  15. Example of XML material database • <?xmlversion="1.0"encoding="UTF-8"?> • <materialDatabasexmlns="materials.xsd"> •   <materialname="Si"description="(100)[silicio]"> •     <parametername="dielectricConstant"description="CostanteDielettricarelativa"type="double"value="11.8" /> •     <parametername="longitudeMassForElectrons"description="MassaLongitudinaleelettrone"type="double"value="0.98" /> •     <parametername="transversalMassForElectrons"description="MassaTrasversaleelettrone"type="double"value="0.19" /> •   </material> •   <materialname="SiO2"description="ossidodisilicio"> •     <parametername="dielectricConstant"type="double"value="3.9" /> •   </material> •   <materialname="Air"description="Aire"> •   </material> • </materialDatabase>

  16. Storing materials and boundary conditions in MEDMEM mesh • Implemented by correct naming of groups, which are then read in code to retrieve materials and boundary conditions • Examples: bottomoxide[Si] metalplate1[dirichlet=1.0] • From SALOME mesh, we get ID’s of nodes and assign a group color number to them • From group number, we determine material, Dirichlet boundary conditions etc. These data are stored in numeric arrays [0..n] – n is number of groups

  17. MeshAPI/Linear-Nonlinear PDE • Classes allowing solving nonlinear and nonlinear PDE, using DOLFIN, allows to set preconditioners and Krylov methods: • Available Krylov methods: • cg - The conjugate gradient method • gmres - The GMRES method (default) • bicgstab - The stabilized biconjugate gradient squared method • Preconditioners: • none - No preconditioning • jacobi - Simple Jacobi preconditioning • sor - SOR, successive over-relaxation • ilu - Incomplete LU factorization (default) • icc - Incomplete Cholesky factorization • amg- Algebraic multigrid (through Hypre when available)

  18. MeshAPI based solvers • Using MeshAPI, one can easily, in few lines define DOLFIN solvers as classes inherited from cl. Dolfin • Behaviour that can be generalized and reused is already defined in Mesh API • It can be used in any current and future examples • There are 3 example solvers: • Poisson example from DOLFIN manual, but using Salome mesh • Poisson equation computed on partitioned group • Poisson equation computed on partitioned group with permittivity (Eps) • Non-linear Poisson equation computed on partitioned group with permittivity (not 100% done)

  19. Solving example – linear Poisson • Solving linear PDE: Poisson equation: • f(x,y,z) – source function (known), can be 0 • ε(x,y,z) – permittivity of material in given point • u(x,y,z)– potential, that we are computing

  20. Solving example – linear Poisson • Bi-linear and linear form of Poisson equation: • g(x,y,z)– Neumann boundary condition

  21. Converting equation to variational form • # The bilinear form a(v, U) and linear form L(v) for • # Poisson's equation. • # Compile this form with FFC: ffc -l dolfin PoissonEps.form • element = FiniteElement("Lagrange", "tetrahedron", 1) • v = TestFunction(element) • u = TrialFunction(element) • f = Function(element) • g = Function(element) • eps = Function(element) • a = dot(grad(v), grad(u))*eps*dx • L = v*f*dx + eps*v*g*ds • # This generates 5239 lines, 191.359 characters

  22. Main solving routine in C++ • #include "PoissonEps.h“ • #include "LinearPDE.hxx" • int SC::PoissonEps::solve () • { • Source f (mesh); • Flux g (mesh); • DirichletFunction u0 (mesh); • DirichletBoundary boundary(mesh); • DirichletBC bc (u0, mesh.dolfinMesh, boundary); • Eps eps (mesh); • PoissonEpsBilinearForm a (eps); • PoissonEpsLinearForm L (f, g, eps); • SC::LinearPDE pde (a, L, mesh.dolfinMesh, bc); • pde.setupKrylov (mesh.krylovMethod, mesh.krylovPc); • Function solution; • pde.solve(solution); • mesh.nodePotential.init (u); mesh.nodeSource.init (f); mesh.nodeFlux.init (g); • mesh.resetFieldsToWrite(); • Field<double> *fields[] = {&mesh.nodePotential, &mesh.nodeSource, &mesh.nodeFlux, NULL}; • mesh.addFieldsToWrite (fields); • }

  23. Dirichlet boundary in C++ • class DirichletBoundary : public SubDomain • { • MeshAPI &mesh;public: • DirichletBoundary(MeshAPI & meshInstance) : mesh(meshInstance) • { • } • bool inside(const dolfin::real* x, bool on_boundary) const • { int index = mesh.getGroupNumberFromCoordinates(x); MaterialFunction *nodeMaterial = mesh.materialFunctions[index]; return nodeMaterial->materialData == NULL; } };

  24. Dirichlet values in C++ • class DirichletFunction : public Function • { • MeshAPI &mesh;public: • DirichletFunction(MeshAPI& meshInstance) : mesh(meshInstance), Function(meshInstance.dolfinMesh) • { • } • dolfin::real eval(const dolfin::real* x) const • { • int index = mesh.getGroupNumberFromCoordinates(x); MaterialFunction *nodeMaterial =mesh.materialFunctions[index]; • return nodeMaterial->dirichlet; • } };

  25. Source function in C++ • class Source : public Function • { • MeshAPI &mesh;public: • Source(MeshAPI & meshInstance) : mesh(meshInstance), Function(meshInstance.dolfinMesh) • { • } • dolfin::real eval(const dolfin::real* x) const • { • return 0; • } };

  26. Neumann boundary conditions C++ • class Flux : public Function • { • MeshAPI &mesh;public: • Flux(MeshAPI & meshInstance) : mesh(meshInstance), Function(meshInstance.dolfinMesh) • { • } • dolfin::real eval(const dolfin::real* x) const • { • return 0; • } };

  27. Defining permittivity in C++ • class Eps : public Function • { • MeshAPI &mesh;public: • Eps (MeshAPI& meshInstance) : mesh(meshInstance), Function(meshInstance.dolfinMesh) • { • } • dolfin::real eval(const dolfin::real* x) const • { • int index = mesh.getGroupNumberFromCoordinates(x); MaterialFunction *nodeMaterial =mesh.materialFunctions[index]; • return nodeMaterial->permitivity; • } };

  28. Geometry modelling of transistor

  29. Automatically generated mesh

  30. Scalar map of the electric potential

  31. Scalar map of the electric potential

  32. Conclusion - 1/2 • NanoFEM platform is a new research environment for TCAD simulations of nanoscale devices. • Based on free LGPL components SALOME Platform and FEniCS/DOLFIN • We can concentrate only on developing of our MeshAPI and computational modules • Physicist/developers – independent • Simple definition of equations instead of programming

  33. Conclusion – 2/2 • Interactive pre- and post-processing • Automated meshing • Modules can run on remote servers • High performance • Standard formats - .MED and .HDF • .XML material database • Good extendibility and modularity

  34. Possible future effort for the NanoFEM Platform • More complex equations (drift, diffusion) • Compare performance with commercial • More modules with exchange of fields • Control of simulation flow and coupling • Tests of supervision (with scripting) • More complex boundary conditions • Run on native Debian and Windows

  35. Thank you for your attention. ??? Do you have any questions ?

More Related