1 / 12

1.2: The Nature of Data

CHS Statistics. 1.2: The Nature of Data. Objective: To understand the different types of data. Data. Data ( plural ) – observations (such as measurements, genders, and survey responses) that have been collected Datum ( singular )

mea
Télécharger la présentation

1.2: The Nature of Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHS Statistics 1.2: The Nature of Data Objective: To understand the different types of data

  2. Data • Data (plural)– observations (such as measurements, genders, and survey responses) that have been collected • Datum (singular) • Sometimes used to find statistics if the context of the data is randomly selected and/or representative of the population

  3. Parameter vs. Statistic • Parameter – a numerical measurement describing some characteristic of a population • Statistic – a numerical measurement describing some characteristic of a sample

  4. Parameter vs. Statistic – YOU DECIDE! • A recent survey of a sample of MBAs reported that the average salary for an employee with an MBA is more than $82,000. • Starting salaries for the 667 MBA graduates for the University Of Chicago Graduate School Of Business increased 8.5% from the previous year. • In a random check of a sample of retail stores, the Food and Drug Administration found that 34% of the stores were not storing fish at the proper temperature. • When Lincoln was first elected to the presidency, he received 39.82% of the 1,865,908 votes cast.

  5. Two Types of Data • Quantitative Data – values that answer questions about the quantity or amount (with units) of what is being measured. • Examples: income ($), height (inches), weight (pounds) • Categorical Data – (qualitative data) can be separated into different categories that are often distinguished by some nonnumeric characteristic • Examples: sex, race, ethnicity, zip codes • Wait? Hold up! Did I just see a zip codes as categorical data? I thought they were numbers…

  6. Categorical vs. Quantitative - You Decide! • Length of a song • Responses in an opinion poll • Telephone Number • Income of college graduates • The genders (male/female) of college graduates

  7. Discrete vs. Continuous Data • Discrete Data– result when a number of possible values is either a finite number or a “countable” number (dealing with counts) • Example: the number of students with blonde hair • Continuous Data – result from infinitely many possible values that correspond to some continuous scale that covers a range of values without gaps, interruptions, or jumps (often times has units of measure attached) • Example: the amount of rainfall in Zelienople this past month

  8. Discrete vs. Continuous Data – YOU DECIDE! • X represents the number of motorcycle accidents in one year in California. • x represents the length of time it takes to get to work. • x represents the volume of blood drawn for a blood test. • x represents the number of rainy days in the month of July in Orlando, Florida. • x represents the amount of snow (in inches) that fell in Nome, Alaska last winter.

  9. Levels of Measurement • Nominal – characterized by data that consist of names, labels, or categories only • The data cannot be arranged in an ordering scheme (such as high to low) • Example: survey responses of yes, no, and undecided • Ordinal – can be arranged in some order, but the differences between the data values either cannot be determined or are meaningless • Example: grade letters (A, B, C, D, F); movie ratings (1, 2, 3, 4, 5) – while you can find the difference between the ratings, it is meaningless. The difference of 1 or 2 is meaningless, because it cannot be compared to other similar differences.

  10. Levels of Measurement (continued) • Interval – similar to the ordinal level, but the difference between any two data values is meaningful. However, there is no natural zero starting point (where none of the quantity is present). • Example: temperatures (while 0° F seems like a good starting point, it isn't necessarily) • Ratio –similar to the interval, but has a natural zero starting point (where zero indicates none of the quantity is present) • Differences and ratios are meaningful • Example: weights of adult humans, prices of jeans

  11. Levels of Measurement – YOU DECIDE! • Body temperature in degrees Fahrenheit of a swimmer • Collection of phone numbers • Final standing for the football Northeastern Conference • Heart rate (beats per minute) of an athlete.

  12. 1.2 Assignment P. 10 #1 – 19 ALL

More Related