1 / 12

Internet Bandwidth Measurement Techniques

Internet Bandwidth Measurement Techniques. Muhammad Ali Dec 17 th 2005. Passive vs. Active Monitoring. Active injects traffic on demand Passive watches things as they happen Network device records information Packets, bytes, errors … kept in MIBs retrieved by SNMP

melvyn
Télécharger la présentation

Internet Bandwidth Measurement Techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Internet Bandwidth Measurement Techniques Muhammad Ali Dec 17th 2005

  2. Passive vs. Active Monitoring • Active injects traffic on demand • Passive watches things as they happen • Network device records information • Packets, bytes, errors … kept in MIBs retrieved by SNMP • Devices (e.g. probe) capture/watch packets as they pass • Router, switch, sniffer, host in promiscuous (tcpdump) • Complementary to one another: • Passive: • does not inject extra traffic, measures real traffic • Polling to gather data generates traffic, also gathers large amounts of data • Active: • provides explicit control on the generation of packets for measurement scenarios • testing what you want, when you need it. • Injects extra artificial traffic • Can do both, e.g. start active measurement and look at passively

  3. Passive tools • SNMP • Hardware probes e.g. Sniffer, NetScout, can be stand-alone or remotely access from a central management station • Software probes: snoop, tcpdump, require promiscous access to NIC card, i.e. root/sudo access • Flow measurement: netramet, OCxMon/CoralReef, Netflow

  4. Some Active Measurement Tools • Ping connectivity, RTT & loss • flavors of ping, fping, Linux vs Solaris ping • Alternative synack, but can look like DoS attack • Sting: measures one way loss • Traceroute • Combining ping & traceroute, • traceping, pingroute • Pathchar, pchar, pipechar, bprobe, abing etc. • Iperf, netperf, ttcp, FTP …

  5. Ping • ICMP client/server application built on IP • Client send ICMP echo request, server sends reply • Server usually in kernel, so reliable & fast • User can specify number of data bytes. Client puts timestamp in data bytes. Compares timestamp with time when echo comes back to get RTT • Many flavors (e.g. fping) and options • packet length, number of tries, timeout, separation … • Ping localhost (127.0.0.1) first, then gateway IP address etc.

  6. Ping example Repeat count Packet size Remote host RTT syrup:/home$ ping -c 6 -s 64 thumper.bellcore.com PING thumper.bellcore.com (128.96.41.1): 64 data bytes 72 bytes from 128.96.41.1: icmp_seq=0 ttl=240 time=641.8 ms 72 bytes from 128.96.41.1: icmp_seq=2 ttl=240 time=1072.7 ms 72 bytes from 128.96.41.1: icmp_seq=3 ttl=240 time=1447.4 ms 72 bytes from 128.96.41.1: icmp_seq=4 ttl=240 time=758.5 ms 72 bytes from 128.96.41.1: icmp_seq=5 ttl=240 time=482.1 ms --- thumper.bellcore.com ping statistics --- 6 packets transmitted, 5 packets received, 16% packet loss round-trip min/avg/max = 482.1/880.5/1447.4 ms Missing seq # Summary

  7. Traceroute Remote host • UDP/ICMP tool to show route packets take from local to remote host 17cottrell@flora06:~>traceroute -q 1 -m 20 lhr.comsats.net.pk traceroute to lhr.comsats.net.pk (210.56.16.10), 20 hops max, 40 byte packets 1 RTR-CORE1.SLAC.Stanford.EDU (134.79.19.2) 0.642 ms 2 RTR-MSFC-DMZ.SLAC.Stanford.EDU (134.79.135.21) 0.616 ms 3 ESNET-A-GATEWAY.SLAC.Stanford.EDU (192.68.191.66) 0.716 ms 4 snv-slac.es.net (134.55.208.30) 1.377 ms 5 nyc-snv.es.net (134.55.205.22) 75.536 ms 6 nynap-nyc.es.net (134.55.208.146) 80.629 ms 7 gin-nyy-bbl.teleglobe.net (192.157.69.33) 154.742 ms 8 if-1-0-1.bb5.NewYork.Teleglobe.net (207.45.223.5) 137.403 ms 9 if-12-0-0.bb6.NewYork.Teleglobe.net (207.45.221.72) 135.850 ms 10 207.45.205.18 (207.45.205.18) 128.648 ms 11 210.56.31.94 (210.56.31.94) 762.150 ms 12 islamabad-gw2.comsats.net.pk (210.56.8.4) 751.851 ms 13 * 14 lhr.comsats.net.pk (210.56.16.10) 827.301 ms Max hops Probes/hop No response: Lost packet or router ignores

  8. Pingroute • Run traceroute, then ping each router n times • helps identify where in route the problems start to occur • Routers may not respond to pings, or may treat pings directed at them, differently to other packets

  9. Path characterization • Pathchar • sends multiple packets of varying sizes to each router along route • measures minimum response time • plot min RTT vs packet size to get bandwidth • calculate differences to get individual hop characteristics • measures for each hop: BW, queuing, delay/hop • can take a long time • Pipechar/abing • Also sends back-to-back packets and measures separation on return • Much faster • Finds bottleneck Bottleneck Min spacing At bottleneck Spacing preserved On higher speed links

  10. Network throughput • Iperf • Client generates & sends UDP or TCP packets • Server receives receives packets • Can select port, maximum window size, port , duration, Mbytes to send etc. • Client/server communicate packets seen etc. • Reports on throughput • Requires sever to be installed at remote site, i.e. friendly administrators or logon account and password

  11. Iperf example 3 parallel streams Max window size Remote host TCP port 5006 25cottrell@flora06:~>iperf -p 5008 -w 512K -P 3 -c sunstats.cern.ch ------------------------------------------------------------ Client connecting to sunstats.cern.ch, TCP port 5008 TCP window size: 512 KByte ------------------------------------------------------------ [ 6] local 134.79.16.101 port 57582 connected with 192.65.185.20 port 5008 [ 5] local 134.79.16.101 port 57581 connected with 192.65.185.20 port 5008 [ 4] local 134.79.16.101 port 57580 connected with 192.65.185.20 port 5008 [ ID] Interval Transfer Bandwidth [ 4] 0.0-10.3 sec 19.6 MBytes 15.3 Mbits/sec [ 5] 0.0-10.3 sec 19.6 MBytes 15.3 Mbits/sec [ 6] 0.0-10.3 sec 19.7 MBytes 15.3 Mbits/sec • Total throughput =3*15.3Mbits/s = 45.9Mbits/s

  12. References • N. Hu, P. Steenkiste, “Evaluation and Characterization of Available Bandwidth Probing Techniques”. • Les Cottrell, “Internet Monitoring”, presented at, NIIT, March 15, 2005.

More Related