180 likes | 289 Vues
Discover the functioning of Turing Machines through examples and rules, showcasing their ability to process data effectively. Witness how Turing Machines transform binary representations and derive successors efficiently. Dive into the world of computation and logic brought to life by these fascinating machines.
E N D
How Does Turing Machine Think? ExampleChaoyang Li RULE’S If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT! Let’s see how they are carried out on a piece of paper that contains 111101:
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
So the successor’s output on 111101 was 000011 which is the reverse binary representation of 111101. Similarly, the successor of 127 should be 128:
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT! So the successor’s output on 1111111 was 10000000 which is the reverse binary representation of 1111111.