1 / 36

Prof. Marc CRETIN, European Membranes Institute, University of Montpellier, France

Carbon based materials : a promising approach for water depollution by electrochemical advanced oxidation processes. Prof. Marc CRETIN, European Membranes Institute, University of Montpellier, France http://www.iemm.univ-montp2.fr/

mmarianne
Télécharger la présentation

Prof. Marc CRETIN, European Membranes Institute, University of Montpellier, France

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Carbonbasedmaterials: apromisingapproachforwaterdepollutionbyelectrochemicaladvancedoxidationprocesses Prof.MarcCRETIN, EuropeanMembranesInstitute,UniversityofMontpellier,France http://www.iemm.univ-montp2.fr/ Theme:EmergingTechnologiesandApplicationsofDiamondandCarbonMaterials Int.Conf.onDiamondandCarbonMaterials July17-18,2017Chicago,Illinois,USA

  2. Outline PartA:ElectrodematerialsforElectrochemicalAdvancedOxidationProcesses forpollutantsmineralization Environment Energy PartB:CouplingenergyconversionandEAOPforFuelCellFentonsystem

  3. PharmaceuticalsinEnvironmentand RemediationTechniques 3

  4. Pharmaceuticalsinenvironment Householdsewage: excretedandexpireddrugs Livestockandaqua farming Groundwater WWTPs effluents Surfacewater Pharmaceuticalindustries Hospitalswaste 1

  5. Environmentimpacts Toxiccompounds: Bio-accumulableandstableintheenvironment Abnormalphysiologicalprocesses/Increaseincidenceofcancer(Kolpinetal.,2002) Developmentofantibioticresistantpathogens(Bartelt-Huntetal.2011) Reproductiveimpairmentinaquaticorganisms(Bartelt-Huntetal.2011) Specificcases DeclineofvulturepopulationinIndiain1990s(Oaksetal.,2003) AppearancesColiinGerm in2011 (Ratolaetal., 5

  6. RemediationTechniques Emerging pollutants Treatments Physico- chemical Advanced Oxidation Processes (AOP) Biodegradation Pollutants transfer but no degradation ! Need of secondary treatments ! Pollutants: Mineralization in CO, HOand 2 2 potentially in small organic acids • Some compounds are toxic for micro- organisms • MembraneBioreactor • Adsorption, • Coagulation,Flocculation • MembraneSeparation • BiologicalOxidation 6

  7. Advancedoxidationprocess(AOP) Basedontheoxidativepotential(thermodynamicapproach) andthereactivitypower(kineticapproach)ofOHradicals OH: Thermodynamic E°=2.80V/SHE OH: Kinetic . Productsk=109-1010 M-1s-1 S+OH NONselectiveoxidantwithhighkineticconstants 7

  8. RemediationTechniques WaterTreatments Advanced Oxidation Processes (AOP) Pollutants: Mineralization in CO2, H2O and potentially in small organic acids OH°:NONselectiveoxidant withhighkineticconstants OH:Kinetic Ratedegradationk=109-1010M-1s-1 OH:Thermodynamic E° = 2.80 V/SHE 8

  9. Advancedoxidationprocesses(AOP) BasicallyradicalscanbeproductedbytheFentonreaction: . +H2O+OH H2O2+Fe2++H+ Fe3+ MainDrawbacks: • High quantityofchemicalsis needed(Hydrogenperoxide) • Sludges formation(basedon Fe(OH)3precipitation) 9

  10. HowtoproduceOH°radicalswithoutchemicals? Indirectlybyelectro-Fentonprocessbasedon:electrochemicalreductionofdissolvedO2:  O22H2eH2O2 AndbytheFentonreaction: Fe2H H O Fe3H O OH  2 2 2 Ongraphitecarbonelectrodelike: CarboŶ Felt ;CFͿ or ŵodified CF… Directlybyelectrochemical wateroxidation: H OOHHe 2 Onelectrodewithhighoxygenover-potentiallike: borondopeddiamond,TiOx;x<2Ϳ… 10

  11. Selectedpharmaceuticalsandazodye Amoxicillin Propanolol Paracetamol AcidorangeII

  12. Radicalsproductionbycathodicelectro-Fentonprocess GraphenetoenhanceperformancesofCathodicMaterials Exfoliation Grapheneoxideparticles ElectrophoreticdepositiononCF 2-Dlayerofone-atomthicksheetcomposedofsp2carbonatomsarrangedinahoneycombstructure GrapheneoxideonCF 2DstructureofgrapheneCharacterizedbyXRDandAFM Electrochemicalor thermalreduction ReducedGrapheneoxideonCF Leetal.RSCAdv.,2015,5,42536-42539

  13. ReducedGrapheneoxidetoenhanceperformances XPSanalysis RawCF=rawcarbonfeltGO=grapheneoxideTR=Thermallyreduced • RawCF: • Smoothsurface-89.9° HighefficiencyofGOThermalreduction(N2/5%H2)ofGO • Thermalreduction OpenporesfilledupbyrGO-0°

  14. ReducedGrapheneoxidetoenhanceperformances Electrochemicalbehaviorsofmodifiedelectrodes CV-Redoxprobe[Fe(CN)6]3–/[Fe(CN)6]4– EIS-Nyquistplots Highelectrochemicalresponseandlowinterfacialresistanceofreducedgrapheneoxideobtainedeitherbyelectrochemicalorthermalreduction O2reductionintoH2O2 Fe2HHOFe3HOOH 2 2 2 LinearscaninpresenceofdissolvedO2

  15. ReducedGrapheneoxidetoenhanceperformances AO7solutionaftera 5’ treatment RemovalofanazodyebyElectron-Fenton Apparentfirstorderrateconstantsandabatementsforthedegradationkineticsof AO7 Abatement(%)after3 min kapp(min-1) R2 Cathode rawCF 0.2596 0.9961 54.2 rGO-CF 0.7846 0.9987 81.4 TOCremovalafter2h.treatment Highmineralization(95%after8h.)Highstability

  16. ToworkatlargepHwindow(pH3–7)without • intrant(i.e.pHadjustmentandferricsolution) Heterogeneouselectro-Fentonprocess:aneffectivealternative • Surfacecatalyzedprocess– expandpHwindow • Highrecyclabilityandreusability Advantages -Catalystaddedinthesolution  Configuration/Design Catalystloaded/impregnatedintheelectrode-cathode Nopost-treatmentseparation CoFe-LDHcoatingforelectro-FentonatcircumneutralpH

  17. CoFe-LDHcoating Synthesis:Solvothermalprocess Co(NO3)2.6H2O+Fe(NO3)3.9H2O+CO(NH2)2+NH4F CoFe-LDH/CF Hydrothermaltreatment Growthsolution Autoclave Optimumconditions-90oC,7hand 2:1(Co:Fe) Av.loading=7.0 ± 0.3mgcm‒2 17

  18. CoFe-LDHcoating Characterizationofthepreparedelectrode SEManalysis 50 µm 50 µm Rawcarbon-felt LDHCoatingonCFaftersolvothermaltreatment:Ursineslikestructure 10 µm Magnifiedimage 18

  19. CoFe-LDHcoating Comparisonbetweenheterogeneousandhomogeneoussystem Heterogeneouscatalyst 100 CoFeLDH Co+Fe2:1 80 Homogeneouscatalyst Co+Fe1:1 TOCremoval(%) 60 Fe HeterogeneousSurface-catalyzedprocesspredominantatcircumneutralpH 40 20 HomogenouscatalyzedprocessDecreasesatcircumneutralpH 0 3 5,83 pH 7,1 • highermineralizationwithCoFe-LDH/CFcomparedtohomogeneous • systematalltimeandpH • LowefficiencyinhomogeneousEFaspHincrease– catalystprecipitation 19

  20. ? Electro-Fentonprocess ThiXuan HuongLe,M. Cretinetal.Journal ofMaterialsChemistryA, 2016, 4, 17686-17693 « Coverpicture»

  21. ? Electro-Fentonprocess ThiXuan HuongLeetal. Journal ofMaterialsChemistryA, 2016, 4,17686-17693 « Coverpicture»

  22. Fuelcells Electro-Fentonprocess ThiXuan HuongLeetal. Journal ofMaterialsChemistryA, 2016, 4,17686-17693 « Coverpicture»

  23. FuelCell-Fentonsystem e- e- Cathode Anode e- EFprocess e- Carbonfelt(CF) Au@CF Toproposetheproofofconceptforanautonomoussystemforwaterremediationassociatingnanoparticlesforglucoseoxidationandcarbonbased catalystforoxygenreduction

  24. Anodicelectrode (Au@CF) 1) Electro-deposition of gold layers on rawCF by cyclic voltammetry (CV) in solution containing chloroauric acid 10 µm 10 µm 1000°C,60’ N2 2)Thermaltreatment 333 nm 50 µm 1.5 µm

  25. FuelCell-Fentonsystem 15 10mM glucose -Glucos 12,5 CF@Au e 3 2 10 F-Glucos j/mAcm-2 rawC e 7,5 Carbonfelt(CF) 5 2,5 1 0 -2,5 -5 Anode e- e- Cathode -0,8-0,6-0,4-0,200,20,40,60,81 E/Vvs.Ag/AgCl e- EFprocess Au@CF for glucose oxidation e- ? Au@CF

  26. Cathodic electrode (?) ElectrocatalyticpropertiesofrawCFarenotadaptedto getspontaneousreactionwhenassociatedwithAu@CF NeedtoincreaseO2reductionpotentialbythedeposit ofamicroporouslayerofN-dopedC

  27. Cathodic electrode (CF@pC) SynthesisofporouscarbonbyALD/solvothermalgrowthofMOFonCF • Zn • OZnOfilmdepositedat100°C • Growth rate0.2 nm/cycle Zn(C2H5) H2O 2 1) ALD of ZnO on carbon felt substrate c)Exposureto H2O b) Purge with Ar d)PurgewithAr a) Exposure to diethyl zinc ZIF-8 Pores Autoclaveat100°C, 5hwith2-methyl-imidazole 2) Solvothermal conversion of ZnO in ZIF-8 Zinc-Nitrogen tetrahedra 1000 °C,10h pC@CF Porous carbon layer deposited on carbon felt EvaporationofZinc in ZIF-8 structure 3) Carbonization of Carbon felt/ ZIF-8 Under nitrogen 200mL/min

  28. Cathodic electrode (CF@pC) Characterization VolumetryGasAdsorptionofN2: XPS • Raw-CF:0.0915m²/g • CF-pC:64m²/g(porevolume=0.082 cm2/g)→700timeshigher Contact angle measurements of water drop Sampleraw-CFpC@CFAngle(°)89.9 0 Polarizationcurves Propertie HydrophobHydrophilic ic Positive shift for ORR (0.4V) O2+2H++2e-→ H2O2

  29. FuelCell-Fentonsystem e- e- e- EFprocess e- pC@CF Au@CF • Au@CF anode presents electrocatalytic properties for glucose oxidation • pC@CF cathodepresents electrocatalytic properties for O2 reduction into H2O2

  30. Fuel Cell-Fentonsystem Durabilityofthecellforthedecoloration quantifiedbyabsat485nm AO7degradation(quantifiedbyHPLC) Acid orange 7 Week 0 Good reproducibility and durability Main results Decolorization of the solution after a few hours Electricalperformanceofthe FC-Fentoncell UVvisiblespectra Degradation of the aromatic formed as subproducts after 24h ThiXuan HuongLeetal. Journal ofMaterialsChemistryA, 2016, 4, 17686-17693

  31. Conclusions ImprovementofcarbonmaterialspropertiesforElectrocatalysis inEnvironnementalApplications Clean technology: Electrochemical Advanced Oxidation Process Green energy: Biomass & Fuel cell electro-Fentonprocess + Fuelcells Carbonfeltmodifiedby N-dopedmicroporouscarbon and/orreducedGrapheneOxide CarbonfeltmodifiedbyGoldNanoparticles FuelCellFentonsystem

  32. Worksinprogress Worksinprogress -CathodicN-dopedmicroporouscarbonlayerstooptimizepollutantsadsorptionandelectrochemicaldegradationbyEF AppliedCatalysisandInterfaces2017,M.Cretinetal. TheJournalofPhysicoChemistry2017,M.Cretinetal. -CathodicelectrocatalyticNPdepositedoncarbonfelttooptimizeoxygen reductionforenergysaving(fuelcells,microbialfuelcells,enzymaticfuelcellsforwaterdepollution) -AnodicnanomaterialstoimproveanodicoxidationofbiomasstoreplacegoldNPdepositedoncarbonfelts BimetallicNPforbiosourcedfueloxidation (glycerol,ethanol…)

  33. Worksinprogress Worksinprogress -Reactivecarbontubularmembranesforelectro-Fentoncoupledwith pressure-drivenprocesses Increaseofthedegradationkineticof60%forTMP>2barbyincreasingmasstransfer P Retentate Permeate O2 H2O2 H2O +CO2 MarcCretinetal.,JournalofMembraneScience510(2016)182–190 H2O Alimentation OH° (effluent) +organicpollutants WE CE (Eouicontrôle)

  34. Worksinprogress -Sub-stoichiometricTiO2Magnéliphaseasapromisingreactiveelectrochemicalmembrane(REM)forelectrooxidation Patented Poresize:1.5to2µmPorevolume:30to45% Patented Ti4O7thinfilmdepositedonTisubstrate • AnodeperformancesTi4O7>BDD>Pt>DSA WaterResearch Vol.106 2016, M.Cretinetal. Degradationkineticofanantibiotic(amoxicilline) asafuntionoftheanodematerial

  35. Acknowledgments Manythanksto ….Mika, Sophie T. , Huong,Martin, Anne,SophieC.,Yaovi,Widya,Roseline,Clément,Christel,Mehmet,Clémence,Gauthier, Stella, Eddy…… TheANRFRENCHPROGRAMCELECTRON2014-2018 forelectrochemicaladvancedoxidationprocessesforwastewatertreatment

  36. Thankyouforyour attention!

More Related