470 likes | 595 Vues
This document explores the concept of final acceleration based on TIMSS methodologies. It delves into various mathematical principles, providing formulas and examples relevant to acceleration calculations. The discussions include complex scenarios, algebraic expressions, and inequality constraints that are crucial for comprehending physical phenomena related to acceleration. By offering a systematic approach, this text aims to enhance understanding for educators and students alike, facilitating better learning outcomes in the realm of physics and mathematics.
E N D
KemPecutanAkhir TIMSS
KemPecutanAkhir TIMSS 30 5 6
KemPecutanAkhir TIMSS 15 30 5 15 6
KemPecutanAkhir TIMSS 12 4 3
KemPecutanAkhir TIMSS 6 12 4 6 3
KemPecutanAkhir TIMSS 200 10 20
KemPecutanAkhir TIMSS 100 200 10 100 20
KemPecutanAkhir TIMSS xy x y
KemPecutanAkhir TIMSS xy/2 xy x xy/2 y
KemPecutanAkhir TIMSS 30 5 15 6
KemPecutanAkhir TIMSS 30 5 15 6
KemPecutanAkhir TIMSS 30 5 15 6
KemPecutanAkhir TIMSS 30 5 15 6
KemPecutanAkhir TIMSS xy x xy/2 y
KemPecutanAkhir TIMSS 3 18 12 4 6 6
KemPecutanAkhir TIMSS 4 60 40 10 20 8
KemPecutanAkhir TIMSS y/2 xy/2 + xy/4 xy/2 x xy/4 y
KemPecutanAkhir TIMSS y x y x + 2 4 4 x 2 x y + y 8 3 6 x y 8 4 y 3 x 4
KemPecutanAkhir TIMSS x(x+1) + x(x-1)/2 x(x+1) x x(x-1)/2 x+1 x-1
KemPecutanAkhir TIMSS x x + 1 + x x - 1 2 2 x x + 1 + x x - 1 2 2 2 2 x + x - x + 2 x 2 2 3 x x + 2
KemPecutanAkhir TIMSS p p-1 B H A p/2 p 2 p E F p/2 p-1 C G D
KemPecutanAkhir TIMSS p 2 p + p-1 2 2 2 p + p - p 2 2 2 2p + p - p 2 2 3p - p 2
KemPecutanAkhir TIMSS 3 ( xy – x ) – 2 ( y – x ) – 4xy = 3xy 3x 2y 2x 4xy – – + – xy = x 2y – – –
KemPecutanAkhir TIMSS -4 ( xy + x ) – 2 ( -y – x ) – 3xy = -4xy 4x 2y 2x 3xy – + + – xy = 2x 2y –7 – +
KemPecutanAkhir TIMSS -4 ( -xy - x ) – 2 ( y – x ) + 3xy = 4xy 4x 2y 2x 3xy + - + + xy = 6x 2y 7 + -
KemPecutanAkhir TIMSS (2)(3) (2)(2) 6 4 2 x x + 2 x 2 3 2 x x + = 2 x = 3 2 x +
KemPecutanAkhir TIMSS (2)(5) (2)(3) 10 6 2 x x + 2 x 2 5 3 x x + = 2 x = 5 3 x +
KemPecutanAkhir TIMSS (3)(4) (3)(3) 12 9 2 x x + 3 x 3 4 3 x x + = 3 x = 4 3 x +
KemPecutanAkhir TIMSS 2 x + y = 60 2 120 (2) 3x + 2y = 160 40 x =
KemPecutanAkhir TIMSS 35 - x ≤ 25 - x ≤ 25 - 35 - x ≤ - 10 x ≥ 10
KemPecutanAkhir TIMSS 10 - x ≥ 25 - x ≥ 25 - 10 - x ≥ 15 x ≤ - 15
KemPecutanAkhir TIMSS 15 - x ≤ 23 - x ≤ 23 - 15 - x ≤ 8 x ≥ - 8
KemPecutanAkhir TIMSS 15 - x ≥ 23 - x ≥ 23 - 15 - x ≥ 8 x ≤ - 8
KemPecutanAkhir TIMSS y 7 x - 1 = 0 2 4 6 8 x y -1 13 27 41 55
KemPecutanAkhir TIMSS y 3 x - 5 = -3 -1 1 3 5 x y -14 -8 -2 4 10
KemPecutanAkhir TIMSS 2 y 2 x + 5 = 0 1 2 3 4 x y 5 7 13 23 37
KemPecutanAkhir TIMSS 2 y 2 x - 3 = -2 -1 0 1 2 x y 5 -1 -3 -1 5
KemPecutanAkhir TIMSS 0 -4 , 0 + 4 -4 + 4 , 2 2 4 4 , 2 0 = ,
KemPecutanAkhir TIMSS y c y m x + c = x
KemPecutanAkhir TIMSS y 5 y m x + 5 = x
KemPecutanAkhir TIMSS y (6,11) (2,7) 5 y m x + 5 = m = 11 - 7 6 - 4 x = 4 = 2 2
KemPecutanAkhir TIMSS y m = 13 - 3 5 - 0 (5,13) = 10 = 2 5 3 y 2 x + c = (0,3) 13 2 5 + c = x c 3 =
KemPecutanAkhir TIMSS a b c + x a a b c + x x =
KemPecutanAkhir TIMSS a b c x x a b c x x =
KemPecutanAkhir TIMSS a b c + + a b c + + =
KemPecutanAkhir TIMSS a b c x x a b c x x =