1 / 16

Trees

This guide explores the construction of trees in predicate logic using established logical rules. It illustrates various rules such as universal quantifiers, existential quantifiers, and implications, demonstrating how to build trees systematically. By breaking down complex logical expressions into simpler components, readers will gain a deeper understanding of predicate logic. The guide includes examples of tree constructions and proofs that can be applied to solve logical problems effectively. Ideal for students and enthusiasts of logic and reasoning.

nani
Télécharger la présentation

Trees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Trees Trees for predicate logic can be constructed using the predicate logic rules.

  2. Trees #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx)

  3. Trees 1 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx)

  4. Trees 1 2 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx) Ba&Ma DO #O FIRST!

  5. Trees 1 2 3 4 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx) Ba&Ma Ma>-Va Ba>Va

  6. Trees 1 2 3 4 5 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx) Ba&Ma Ma>-Va Ba>Va Ba Ma

  7. Trees 1 2 3 4 5 6 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx) Ba&Ma Ma>-Va Ba>Va Ba Ma -Ma -Va *

  8. Trees 1 2 3 4 5 6 7 #x(Bx&Mx) $x(Mx>-Vx) -$x(Bx>Vx) #x(Bx&Mx) $x(Mx>-Vx) --$x(Bx>Vx) $x(Bx>Vx) Ba&Ma Ma>-Va Ba>Va Ba Ma -Ma -Va * -Ba Va * *

  9. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A -#x(Sx&Ex) GOAL

  10. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA ?&-? ?,? &I -#x(Sx&Ex) 3-? -I

  11. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O ?&-? ?,? &I -#x(Sx&Ex) 3-? -I DO #O FIRST.

  12. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O 5) Sa>Ia 1 $O 6) Ia>-Ea 2 $O ?&-? ?,? &I -#x(Sx&Ex) 3-? -I

  13. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O 5) Sa>Ia 1 $O 6) Ia>-Ea 2 $O 7) Sa 4 &O 8) Ea 4 &O ?&-? ?,? &I -#x(Sx&Ex) 3-? -I

  14. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O 5) Sa>Ia 1 $O 6) Ia>-Ea 2 $O 7) Sa 4 &O 8) Ea 4 &O 9) Ia 5,7 >O 10) -Ea 6,9 >O ?&-? ?,? &I -#x(Sx&Ex) 3-? -I

  15. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O 5) Sa>Ia 1 $O 6) Ia>-Ea 2 $O 7) Sa 4 &O 8) Ea 4 &O 9) Ia 5,7 >O 10) -Ea 6,9 >O 11) Ea&-Ea 8,10 &I -#x(Sx&Ex) 3-11 -I

  16. Another Proof 1) $x(Sx>Ix) A 2) $x(Ix>-Ex) A 3) #x(Sx&Ex) PA 4) Sa&Ea 3 #O 5) Sa>Ia 1 $O 6) Ia>-Ea 2 $O 7) Sa 4 &O 8) Ea 4 &O 9) Ia 5,7 >O 10) -Ea 6,9 >O 11) Ea&-Ea 8,10 &I -#x(Sx&Ex) 3-11 -I Now try this one with a tree. For more click here

More Related