1 / 52

Nucleosynthesis at strong magnetization and the titanium problem

Nucleosynthesis at strong magnetization and the titanium problem. EMIN-2018. V.N.Kondratyev, U. M. Nurtayeva, A. Zh. Zhomartova Physics Department, Taras Shevchenko National University of Kyiv , 03022 UA Kyiv, Ukraine

nealsusan
Télécharger la présentation

Nucleosynthesis at strong magnetization and the titanium problem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nucleosynthesis at strong magnetization and the titanium problem EMIN-2018 V.N.Kondratyev, U.M.Nurtayeva, A.Zh.Zhomartova Physics Department,Taras Shevchenko National University of Kyiv, 03022 UA Kyiv, Ukraine 2 Bogolubov Laboratory of Theoretical Physics, JINR, 141980, Dubna, Russia

  2. Before and after pictures of SN1987a

  3. Hertzsprung- Russell (H-R) diagram Stefan-Boltzmann Law for flux luminosity L of a star with radius R & surface temperature T L~(Surface)T4~R2T4

  4. Stellar Collapse and Supernova Explosion Newborn Neutron Star ~ 50 km Gravitational binding energy Eb 1053,5 erg  20% MSUN c2 This is distributed as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy Neutrino Cooling Proto-Neutron Star nuc 31014 g cm3 T  1 MeV

  5. Core-collapse supernova high-mass(M>8Mo)starEvolution on HR diagram explosive nucleosynthesis origin of Heavy Nuclides

  6. Explosive nucleosynthesis Fe core Mc=1.5Mo

  7. INTEGRALVIRGO.UA Lomonosov, NeuStar

  8. IntegralIBIS/ISGRI

  9. CAS A(3.4+0.3-0.1)kpc, TYCHO(2.2+/-0.3)kpc

  10. Investigated Supernovas Name Coordinate Age SN 1987A - 279.7 -31.9, 31 y Cas A - 111.7 -2.1, 330 y TYCHO - 120.1 +1.4, 440 y Vela Junior - 266.3 -1.2 ?

  11. The scheme of the 44Ti decayEarth environment 59 y

  12. Cassiopeia A (3.4+0.3-0.1)kpc Energy range (keV):20-62-72-82-100

  13. F The direction (i.e.. pixel number) dependence of the registered gamma-ray flux at different energy ranges: 20–62 keV - a, 62–72 keV - b, 72–82 keV – c; for the angle region containing the Cassiopeia A SN remnant. The right bottom panel (d) represents the spectrum from the Cassiopeia A in the energy range 20–95 keV, the solid line shows the fit with the power law energy E dependence, .

  14. Background estimate + Lines K·Ea a=-3.64 +/- 0.09 T= 1.5Ms

  15. SPI detector data Fit results Flux=(5.1+/-1.0) 10-5ph/cm2 s T=1.5 Ms

  16. mass of 44Ti synthesized at Cassiopeia A explosion[VNK et al ‘Nucleus2004’; PhAN (2009)] R–distancetotheobject,T1/2–theelementhalf-life,Na–theAvogadro constant,M–molarmass,I–γ-quantaflux,p-quantumyield,t–remnantage. 5.1 3.3

  17. SN1987 A (50kpc) Energy range (keV):20-62-72-82-100

  18. S.A.Grebenev et al Nature, 490, 373-375 (2012).

  19. THEORY & Observations -1 SN1a Model 10

  20. State Equation (SE): Nuclear Matter VSRegular Liquid(Noble Gas) Van der Waals SE (1875) & Nuclear Matter SE(1983)(relative units: V/Vc; p/pc ; T/Tc ) Instability region H. Jaqaman et al., Phys. Rev. C 27 (1983)2782

  21. D=109 g/cm3 T=0.1 MeV

  22. explosion proceeds through convection processes -sphere magneto-rotationalinstabilities & dynamo-action amplifying Magnetic fields up to strengths hundred tera-tesla

  23. The magnetic field evaluation(S.G.Moiseenko, G.S.Bisnovatyj-Kogan, N.V.Ardeljan, MNRAS 370 (2006) 501)

  24. Magnetic field estimates predominant energy component of shock wave ESoriginates from the magnetic pressure <B2>RR~2ES ~1051,5 ergs R~ 40Km; R~ 1Km B~101 - 102 TeraTesla B(R) ~BR/ R

  25. Magnetic field estimates Magnetic and gravitational forces dB2/dR ~ 8pGM n(R)/R2 4pR2 n(R) = dM/dR B~101.5TeraTesla (M/Mo)(10km/R)2 R~ 40Km; R~ 1Km B~101 - 102 TeraTesla

  26. L or B Magneticfieldsin HIC Magnetic field isinducedthrough the axial anomaly Non-zero angular momentum (or equivalently magnetic field) in heavy-ion collisions B~101.5TeraTesla (E/Eo)1/2

  27. NUCLEAR STATISTICAL EQUILIBRIUM in Ultra-Strong Magnetic Fields Entropy S extremum  Nuclear composition at temperature T Binding Energy B spin-magnetic part in partition function

  28. Nuclear Shell Effects at Ultra-Strong Magnetic FieldsV.N.K. //PRL 2002. V.88, 221101 // J.Nucl.Sci.Technol. V.1 Sup.2. P.550 // J.Nucl.Radiochem.Sci. 2002. V.3. P.205 // PRC 2004 V.69, 038801/ЯФ. 2012 Nucleons Binding Energy Level density With Single particle levels filled up to the Fermi energy

  29. the Hartree self-consistent mean field approach inmagnetic field : h • Single particle Hamiltonian • H = HMF + (so)*(ls) + (Magnetic terms) • Pauli–spin (s) - M (hs) • Landau–orbital (l) - M (hl) :protons

  30. Neutrons Minority spin up Majority spin down

  31. Binding energy of even-even symmetricnucleiat magnetic fields h

  32. Zeeman regime: H< 30 TT Linear response: VNK PLB’18, MNRAS’18

  33. Таб.1 For symmetric nuclei

  34. relative yield y=Y(H)/Y(0) [i/56Ni]:44Ti -1; 48Cr -2; 60Zn -3; Магнитное поле, h

  35. SUMMARY • We analyze the synthesis and decay of n nuclides in SNRs • Obtained the spectra and flux for the specific lines of decay products

  36. SUMMARY • Magnetism of Atomic Nuclei Thermodynamic formalism • Magnetic field effect on Nuclear Structure at • Pauli type Paramagnetic Response • Landau-type Orbital Magnetism • Magnetic fields of Tera-Tesla encrease of Binding Energy of Nuclei of Smaller Masses approaching Ti-44 • Enhancement in Yield at nucleosynthesis

  37. relative yield y=Y(H)/Y(0)56Ni(solid) і 44Ti(dashed line) Магнитное поле, h

  38. Averaging over MRI Volume a = DB(H0) kT b=(ra/r0)2 интегральная показательная функция

  39. Galactic chemical evolution

  40. SUMMARY • We analyze the synthesis and decay of n nuclides in SNRs • Obtained the spectra and flux for the specific lines of decay products

  41. SUMMARY • Magnetism of Atomic Nuclei Thermodynamic formalism • Magnetic field effect on Nuclear Shell Structure Phase-shift in shell oscillations of Nuclear Masses • Pauli type Paramagnetic Response • Landau-type Orbital Magnetism • Magnetic fields of Tera-Tesla shiftNuclear Magics of Iron region towards Smaller Masses approaching Ti-44 • Enhancement in Yield at nucleosynthesis

  42. SUMMARY • We analyze the synthesis and decay of 44Ti in SNRs • Obtained the spectra and flux for the lines of 44Sc

More Related