210 likes | 354 Vues
AWAKE Primary Beamlines. C. Bracco, J. Bauche, B. Goddard, E. Gschwendtner, G. Le Godec, L. Jensen, M. Meddahi, J.A. Osborne, A. Pardons, H. Vincke. Outline. TT61 Option: Preliminary Layout and Optics Studies RP and Geometric Constraints Limitations and Possible Solutions
E N D
AWAKE Primary Beamlines C. Bracco, J. Bauche, B. Goddard, E. Gschwendtner, G. Le Godec, L. Jensen, M. Meddahi, J.A. Osborne, A. Pardons, H. Vincke
Outline • TT61 Option: • Preliminary Layout and Optics Studies • RP and Geometric Constraints • Limitations and Possible Solutions • Requirements and Time Estimates • CNGS Option: • Requirements and Time Estimates • Electron Beam Line
AWAKE in TT61 Line TT61 tunnel to west hall TI 2 to LHC TT60 from SPS HiRadMat primary beam line (TT66) HiRadMat facility
AWAKE in TT61 Line Beam from SPS Modification of TT66 8 new switching magnets • New AWAKE beam line. Large slope of 8.5 % of TT61 tunnel some equipment of previous H3 beam line in TT61 tunnel still present T1 target shielding dismantled available free space for switch magnets HiRadMat primary beam line (TT66), fully operational, no changes in layout expected
TT61 Existing Tunnel 8.5% slope = 4.85° Old line: 200 GeV beam Br ~ 670 T m (protons) New line: 450 GeV beam Br ~ 1530 T m (protons) ~1.2 m TT61 Gallery cross section
TT4-TT5: RP Constraints Civil engineering works required! • Dump 2 m underground • Beam deflected by 2° Laser 1 QTLD 2 QTLF Beam from TT61: 0 vertical angle 3 QTLD Floor 3MBA Plasma Cell MBB and MBA: B = 2.1 T 2 QTLF 1MBB Dump 2°
TT4-TT5 TL Optics Studies Final Focusing QF QF QF QF MBA MBA MBA MBB QD QD QD QD At Plasma cell entrance: bx=by=5 m ax=ay=0 m Plasma Cell
TT4-TT5 TL Optics Studies Final Focusing QF QF QF QF MBA MBA MBA MBB QD QD QD QD At Plasma cell entrance: Dx= 0 m Dy=-0.2 m Beam size at Plasma cell entrance: 1 sx = 190 mm 1 sy = 280mm (Dp/p =1E-3) Plasma Cell
TT4-TT5 Area Layout Plasma Cell TT5 TT4 New Service gallery Dump
TT4-TT5 Area Layout Start digging the trench after the service gallery beam higher exit from TT61 at ~2 m (old 200GeV beam exit at ~1.25 m) impact on dump depth!! Plasma Cell TT5 TT4 New Service gallery Dump
Preliminary Beamline Design • Magnets: • 8 MBS • 20 vertical bending magnets • 2 horizontal bending magnets • ~ 30 Quads (~20 in TT61 + final focusing) • PC: • ~ 10 units • +Old Line • New Line • - Tunnel
Preliminary Proton Beamline Design • +Old Line • New Line • - Tunnel dump TT5 TT4 TT61 The 450 GeV beam does not fit in the existing tunnel !!
Possible solutions • Fit the 450 GeV beam in TT61 impact on beam angle in TT4-TT5 and on dump depth RP studies! • Reduce the beam energy to respect all the geometric and RP constraints check impact on experiment
450 GeV Beam in TT61 • Magnets: • 8 MBS • 20 vertical bending magnets • 1-2 horizontal bending magnets • ~ 30 Quads (~20 in TT61 + final focusing) • PC: • ~ 10 units • +Old Line • New Line • - Tunnel
450 GeV Beam in TT61 • +Old Line • New Line • - Tunnel TT5 TT4 TT61 dump ~1.2° angle Dump depth: ~0.5 m Limit in operation (t.b.d. by RP)
Lower Energy: 300 GeV • Magnets: • 8 MBS • ~17 vertical bending magnets • 1 horizontal bending magnets • ~ 30 Quads (~20 in TT61 + final focusing) • PC: • ~ 10 units dump ~2° angle Dump depth: 1.5 m
Impact on Beam Size at 300 GeV Geometric emittancee = 10.9 nm instead of e = 7.2 nm • b = 5m s = 234 mm instead of 200 mm • b = 3.7 m s = 200 mm: feasible! At Plasma cell entrance: bx=by=3.7 m ax=ay=0 m Aperture ok Plasma Cell
Magnets and Power Converters • Magnets: • 8 Switches • ~ 20 vertical bending magnets • 1-2 horizontal bending magnets • # Horizontal and vertical correctors t.b.d • ~ 30 Quadrupoles • Power Converters: • ~10 units • Two options: • Design and build new magnets and PC 3 years from specifications + cabling • Re-use existing equipment (inventory needed) cabling anyhow needed (no manpower available during LS1) • In both cases: first beam in 2017
CNGS Option • Minor modifications of the final focusing system • Magnets and PC already available and in place • Beam instrumentation already available and in place • Re-cabling and new services needed (?) • Possible to increase the energy from 400 GeV to 440 GeV (some margin from 450GeV LHC beam needed for interlock system) really needed? • First beam in 2015 might be feasible (depending on re-cabling/services)!
Electron Beam Line • No studies have been performed up to now • Normally less critical than proton beam (low energy electrons) • Design and production of magnets and PC: • TT61: in the noise of works for proton beam magnets • CNGS: if new design needed first e-beam in ~2016(?) • To be defined now: • electrons injected from the side of the plasma cell or at the beginning impact on interface Laser+protons+electrons • Beam parameters
Conclusions • TT61 Option: • Feasibility studies indicate that only lower beam energy can be envisaged (tunnel size, CE work, RP constraints....) • From preliminary study of lower energy beam: beam operation not before 2017 (magnets, all beam line equipments and general services...) • CNGS Option: • Most attractive to meet a sooner beam operation • Less expensive as beam line and equipment already available • Could be staged-installation of the experimental area towards reaching a complete test facility • If CDR to be ready by March 2013, need to conclude during this collaboration meeting on the beam energy (and Co...) so work can proceed