1 / 89

HEMODYNAMIC MONITORING

HEMODYNAMIC MONITORING. Martha Richter, MSN, CRNA. OBJECTIVES. The student will review cardiac and pulmonary considerations for invasive monitoring Procedural considerations for invasive monitoring Waveform identification related to invasive monitors. EVALUATING THE PATIENT – A REVIEW.

nika
Télécharger la présentation

HEMODYNAMIC MONITORING

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HEMODYNAMIC MONITORING Martha Richter, MSN, CRNA mlr/2007

  2. OBJECTIVES • The student will review • cardiac and pulmonary considerations for invasive monitoring • Procedural considerations for invasive monitoring • Waveform identification related to invasive monitors mlr/2007

  3. EVALUATING THE PATIENT – A REVIEW • PULMONARY • Breath sounds • Level of mentation • Oxygenation • cyanosis • Edema • Chest circumference mlr/2007

  4. EVALUATING THE PATIENT - CARDIOVASCULAR • Pain issues • Skin color/temp • Weakness/fatigue • Urinary output • HR, rhythm, • JVP mlr/2007

  5. EVALUATING THE PATIENT • JVP • supine • Sl distention • Head up • No distention mlr/2007

  6. NONINVASIVE MONITORS • Routine • NIBP • EKG • Pulse ox • Temperature • Urine mlr/2007

  7. CARDIAC FUNCTIONAL ANATOMY • Low pressure system • Right heart • Pulmonary • High pressure system • Left heart • Systemic mlr/2007

  8. CARDIAC CONDUCTION • Atrial depolarization • SA nodethru atria • Ventricular depolarization • AV nodebundlespurkinjes • Atrial repolarization • Ventricular repolarization mlr/2007

  9. MECHANICS OF CARDIAC CYCLE • Isovolumetric phase • Active-requires energy • Ventricular ejection (rapid) • Ventricular ejection (reduced) • Isovolumetric relaxation • Rapid ventricular filling • Beg when ventric pressure <atrial pressure • End diastole = atrial kick mlr/2007

  10. WHAT ABOUT CARDIAC OUTPUT? • CO=HR X SV mlr/2007

  11. CARDIAC OUTPUT • Determined by • Preload • Afterload • Contractility • EF=SV/EDV X 100 mlr/2007

  12. FRANK-STARLING • Described in early 1900s • Relationship between myocardial muscle LENGTH and force of contraction • More diastolic stretch = more ventricular vol = stronger contraction • True to a limit (physiological) mlr/2007

  13. FRANK-STARLING • Resting length affected by degree of preload • CO begins to fall in CHF b/o inc preload mlr/2007

  14. CARDIAC COMPENSATION • Contractility • HR • Arteriolar responses • Venuole responses mlr/2007

  15. INOTROPES • Sympathomimetic amines • Phosphodiesterase inhibitors • Calcium chloride • Digitalis glycosides • glucagon mlr/2007

  16. SYMPATHOMIMETIC AMINES • Catecholamines • Epinephrine • Norpinephrine • Dopamine • dobutamine mlr/2007

  17. NONCATECHOLAMINES • Ephedrine • Metaraminol • Phenylephrine • Methoxamine mlr/2007

  18. PHOSPHODIESTERASE INHIBITORS • Amrinone • Milrinone • 20X more potent than amrinone • aminophylline mlr/2007

  19. INOTROPES • Calcium Chloride • Glucagon • Digitalis • Slows HR, conduction • Inc contractility mlr/2007

  20. VASODILATORS • Nitroprusside • NTG • Phentolamine • Hydralazine • captopril mlr/2007

  21. WHAT IS PRELOAD? • End diastolic length of myocardial fiber(wall stress) • Amount of volume in ventricle at end diastole • Muscle wall compliance important factor • Normal ventricle:lge inc volume = small inc pressure • Stiff ventricle: small inc in volume = large inc pressure mlr/2007

  22. WHAT IS AFTERLOAD? • Pressure that has to be overcome by LV for ejection of ventricular volume • Resistance, impedance, pressure • SVR • PVR • Inc resistancedec contractility/SV mlr/2007

  23. AFTERLOAD • Volume of blood ejected • Size & thickness ventricular wall • Impedance of vessels mlr/2007

  24. DYNAMICS OF VENTRICULAR FUNCTION • Rate • Rhythm • Preload • Afterload • Contractility • Expressed as EF • SV/EDV • LVEF 60-70% • RVEF 45-50% • Heerdt, 2000 mlr/2007

  25. WHAT ABOUT CONTRACTILITY? • Inotropism • Shortening of muscle fibers without altering fiber length or preload • Effected by • ANS • Positive Inotropes • Acidosis (dec) • Negative inotropes (dec) mlr/2007

  26. ISSUES OF MYOCARDIAL O2 • Uses 65-80% • No direct method of measurement • Supply and demand • Disease states • May not be able to inc supply • May have greater demand • Poor reserve = ischemia/infarct risk mlr/2007

  27. CORONARY PERFUSION • Occurs during diastole • LV thick wall • Endocardium flow influence during systole • RV wall less thick • RCA and RV flow during systole • Diastolic pressure provides flow thru aortic root into coronaries mlr/2007

  28. WHAT ABOUT SVO2? • Mixed venous oxygen saturation • Reflect O2 reserve • Samples from PA catheter • <60% (nl 60-80%) • Dec O2 delivery • Anemia • Low CO states • Hypovolemia • Hypoxia mlr/2007

  29. DECREASING SVO2 • Also b/o O2 demand increase • Hyperthermia • Seizures • Pain • Shivering/agitation • Exercise • Burns • hyperthyroidism mlr/2007

  30. HOW DO WE INCREASE SVO2? • Increase O2 delivery • Decrease O2 demand mlr/2007

  31. INCREASE O2 DELIVERY • Increase FIO2 • Increase CO mlr/2007

  32. HOW DO WE DECREASE O2 DEMAND? • Hypothermia • Anesthesia • Neuromuscular blockade • Early stages of sepsis • Hypothyroidism • Shock states mlr/2007

  33. INVASIVE CARDIAC MONITORING • Swan-Ganz catheter • Developed 1960’s • Assess cardiopulmonary function • Cardiac disease • LV function • Valves • Issues of CHF, tamponade, cor pulmonale mlr/2007

  34. SWAN GANZ MONITORING • Pulmonary issues • ARDS/respiratory failure • Severe COPD • Complex fluid management • Shock • Sepsis • ARF • Burns mlr/2007

  35. SWAN-GANZ ADDITIONAL INDICATIONS • CABG/RECENT MI • AAA • Sitting cranis • Unstable sepsis • Liver tx/shunts • High risk OB • PE • Pts on IABP mlr/2007

  36. SWAN-GANZ RELATIVE CONTRAINDICATIONS • LBBB • WPW syndrome • Ebstein’s malformation • Tachyarrythmias • Hypercoagulation • Sepsis • Site of infection mlr/2007

  37. SWAN-GANZ CATHETER mlr/2007

  38. PLACEMENT GUIDELINES • What’s the distance to SVC/RA junction? • IJ 15-20 cm • SVC 10-15 cm • Femoral 30 cm • RAC 40 cm • LAC 50 cm mlr/2007

  39. PLACEMENT mlr/2007

  40. BALLOON PEARLS • 1-1.5 cc used to wedge • <1 cc=too far::pull back • Wedge time <10-15 sec • Never flush with inflated balloon • PCWP = LVEDP (normal heart) • PCWP = LV function • RA = RV function mlr/2007

  41. PLACEMENT mlr/2007

  42. PLACEMENT mlr/2007

  43. PLACEMENT mlr/2007

  44. WEDGE mlr/2007

  45. PCWP WAVEFORM • A=contraction • After QRS • C=closure mitral valve • May not see easily • V=atrial filling (MV closed) • Late T-P interval mlr/2007

  46. PCWP>LVEDP • Mitral stenosis • LA myxoma • PE • Mitral regurgitation mlr/2007

  47. PCWP<LVEDP • Decreased LV compliance • Stiff ventricle • LVEDP >25 mmHg • Aortic regurg mlr/2007

  48. PAD AND PCWP • If not = (1-4 mmHg) • Inc PVR • Cor pulmonale • PE • CHD Causing Pul HTN • Eisenmengers mlr/2007

  49. RA READING • High • RV failure • Tamponade • Pulmonary HTN • COPD • Chronic LV failure • Volume overload mlr/2007

  50. RA READING • Low readings • Hypovolemia • Sepsis • Cirrhosis • anemia mlr/2007

More Related