1 / 21

Linear Collider Workshop 2005 Stanford, 18-22 March, 2005

Linear Collider Workshop 2005 Stanford, 18-22 March, 2005. J.Cvach, V.Vrba, J.Zálešák. LCWS History. LCWS2005 8 th in a series of International Workshop s after: 19-24 Apr 2004, Paris, France 26-30 Aug 2002, Jeju Island, Korea 24-28 Oct 2000, Fermilab, Batavia, Illinois

nimrod
Télécharger la présentation

Linear Collider Workshop 2005 Stanford, 18-22 March, 2005

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear Collider Workshop 2005Stanford, 18-22 March, 2005 J.Cvach, V.Vrba, J.Zálešák Václav Vrba

  2. LCWS History • LCWS2005 • 8thin a series of International Workshops • after: • 19-24 Apr 2004, Paris, France • 26-30 Aug 2002, Jeju Island, Korea • 24-28 Oct 2000, Fermilab, Batavia, Illinois • 28 Apr - 5 May 1999, Sitges, Barcelona, Spain • 8-12 Sep 1995, Iwate, Japan • 26-30 Apr 1993, Waikoloa, Hawaii • 9-14 September, 1991, Saariselka, Finland Václav Vrba

  3. LCWS organization • Sponsored by the World Wide Study for future e+e- Linear Colliders: • which coordinates three regional studies: • the European Committee for Future Accelerators (ECFA), • the North American Linear Collider Physics Group (ALCPG) and • the Asian Committee for Future Accelerators (ACFA) Study Václav Vrba

  4. Statements • In 2001-2002, the three regional organizations of the HEP community - ACFA in Asia, HEPAP (High Energy Physics Advisory Panel) in North America, and ECFA in Europe - have reached the common conclusion that the next accelerator should be an electron-positron linear collider with an initial centre-of-mass energy around 500 Giga-electronvolts (GeV), later upgradable to higher energies. • In August 2004 the International Committee on FutureAccelerators (ICFA): • approved a recommendation for the technology of the future International Linear Collider. • future LC: an international project - ILC Václav Vrba

  5. Tasks for LC Physics/Detector Studies • Inputs to Machine Design (GDE) • Options (g g, ge-, e-e-, Giga-Z...) (K. Hagiwara) • Number of IRs : A task force being formed • MDI issues including : (T. Tauchi) • Crossing angle • Constraints from detector designs • Design and Build Detectors • Establish detector concepts (T. Behnke) • Perform necessary R&Ds (W. Lohman) • Study physics/detector bench marks (T. Barklow, M. Battaglia) V.V., J.Zálešák • Sharpen LC Physics Cases • New Physics Models (S. Dimopolous) • LHC and LC (G. Weiglein) • Cosmology and LC (J. Feng) • Outreach (K. Buesser) J.Cvach ( ) : plenary talks this workshop. Václav Vrba

  6. Detector Concept Studies • SiD • Silicon tracker, 5T field • SiW ECAL North America • “LDC” • TPC, 4T field • SiW ECAL (“medium” radius) Europa – a la TESLA • “GLD” • TPC, 3T field • W/Scintillator ECAL (“large” radius) Japan Václav Vrba

  7. Concept of the detector system for the future e+e- linear collider Image from the TDR ECFA-DESY HCal ECal TPC VxDet Václav Vrba

  8. Concept of the detector system (cont’) Typical jet event (MOKKA simulation + CALIMERO visualization) Ejet = Ech + Eγ + Eh-neutral Energy composition break down: ≈ 65% 25% 10% σch2= (2x10-5)2xΣi E4ch,i Adapted from Dean Karlen σγ2= (0.11)2xEγ = (0.06)2x Ejet σh02= (0.40)2xEh0= (0.12)2x Ejet jet2 = ch2 + 2 + h02+σ2confusion ≈(0.13)2xEjet+σ2confusion The “confusion” term sources are: imperfections of pattern recognition of the deposited energy, wrong track association to the energy cluster(s) in calorimeter, energy double counting, etc. Such term can contribute significantly and often dominates. Václav Vrba

  9. Concept of the detector system (cont’) jet2 = ch2 + 2 + h02+σ2confusion ≈(0.13)2xEjet+σ2confusion • To, že detektory budou umístěny ve velmi silném magnetickém poli 4-5 Tesla, má zásadní vliv na jejich konstrukci: • miniaturizace; • vývoj nových detekčních technik.. Václav Vrba

  10. Concept of the detector system (cont’) • Výrazným příkladem nových R&D je kalorimetrie: Zdálo by se, že k dosažení jemné granularity hadronového kaorimetru stačí např. použít „přeškálovanou“ všestranně testovanou a ověřenou koncepci TileCalu a la ATLAS. Potřeba miniaturních fotodetektorů schopných pracovat v silném magnetickém poli iniciovala intenzívní vývoj polovodičových fotonásobičů (APD, SiPM), na jejichž testování se podílíme – viz příspěvek J.Zálešáka. • Výsledky simulací jednoznačně ukazují, že silikon-wolframový elektromagnetický kalorimetr představuje optimální řešení pro instrumentaci experimentů na LC. Umožňuje lokalizaci elektromagnetických spršek s velmi dobrým prostorovým a energetickým rozlišením a taktéž slouží jako trasovací detektor pro nabité hadrony. • Pražská pracoviště FZU a MFF jsou členy kolaborace CALICE pro vývoj kalorimetrie pro příští lineární urychlovač e+e-. Václav Vrba

  11. Module Module vertical structure CALICE ECal coil TPC HCal ECal } tungsten Detector slab Václav Vrba

  12. Physics prototype – Detector slab Front End electronics Silicon sensor array Aluminum shielding sensor pad 1 x 1 cm2 Cooling system Vertical cross section (C / W) structuretype H Václav Vrba

  13. Physics prototype - sensors Two Si sensor vendors : ON Semiconductor, Czech Rep. Elma, Russia Topsil 500 mm material, 12 kcm ON Semiconductor prototype sensors measured and qualified: New design gds file prepared and submitted to ON Semiconductor : Wacker 530 m material, ≈ 6 kcm Václav Vrba

  14. ECal design consideration a) Materials with small Moliere radius  better containment of shower cascade around the impact track and smaller shower overlap: Iron Tungsten b) Materials with small ratio of radiation length/ interaction length  better separation of el-mag. and hadronic showers: π+ γ from Steve Magill γ Václav Vrba

  15. Calorimetry performance All the detectors – including hadron calorimeter (not discussed here) - should represent well balanced system. The requirements of significant improvement of energy pattern recognition (and thus jet energy resolution) requires high degree of tracking capability of calorimeters. An improvement of the jet resolution from 60%/√E to 30%/√E for the channels e+e-  ννZZorννWW @ 800 GeV is spectacular: It is equivalent to the luminosity increase by 40%. Václav Vrba

  16. Detector Timeline by WWS Timed to machine benchmarks Václav Vrba

  17. Milestones of ILC (by sugimoto) 2004 2005 2006 2007 2008 2009 2010 GDE (Design) (Construction) Technology Choice Acc. CDR TDR Start Global Lab. Detector Outline Documents CDRs LOIs Det. Done! Detector R&D Panel Collaboration Forming R&D Phase Detector Construction Tevatron SLAC B HERA LHC T2K Václav Vrba

  18. Václav Vrba

  19. Václav Vrba

  20. Central Tracker Gaseous or Silicon s(1/p) = 6 x 10-5 GeV-1 • Design Studies (GossamerTracker) • (Resolution, Track Efficiency) • Long Silicon Strip sensors (Barrel) • Si Drift sensors (Forward) • Mechanical Support (<1% X0 per layer • FE Electronics (low noise, digitisation) • Field Cage- homogeneous E field • Mechanical Frame (< 3% X0) • Novel Gas Amplification System • Gas Mixture • Performance at High B –Field (100mm (Rf) Resolution) Václav Vrba

  21. Jet(quark) reconstruction • With , Z/Wjj can be reconstructed and separated Václav Vrba

More Related