1 / 24

TIPS & TRICKS ON DECIMAL

TIPS & TRICKS ON DECIMAL. How do you judge if a mathematical expression is difficult or not?. Longer means harder??. Find the for us !. 125 x 32. 125 x 8 x 4. VS. Easier path. 3+2. =. 2+3. (1+2)+4. 1+(2+4). =. LAWS OF ARITHMETICS.

noel-sweet
Télécharger la présentation

TIPS & TRICKS ON DECIMAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TIPS & TRICKS ON DECIMAL

  2. How do you judge if a mathematical expression is difficult or not? Longer means harder?? Find the for us ! 125 x 32 125 x 8 x 4 VS Easier path

  3. 3+2 = 2+3

  4. (1+2)+4 1+(2+4) =

  5. LAWS OF ARITHMETICS • Commutative Law for Addition: • a + b = b + a • 3 + 2 = 2 + 3 • Associative Law for Addition : • ( a + b ) + c = a + ( b + c ) • ( 327 + 125 ) + 875 = 327 + ( 125 +875 )

  6. 3 x 2 = 2 x 3

  7. LAWS OF ARITHMETICS • Commutative Law for Multiplication: • a x b = b x a • 3 ( 2 )= 2 ( 3 ) • Associative Law for Multiplication : • ( a x b ) x c = a x ( b x c ) • ( 3 x 2 ) 5 = 3 ( 2 x 5 )

  8. = (3x2)+(3x5) 3x(2+5)

  9. LAWS OF ARITHMETICS • Distributive Law : • a ( b + c ) = a(b) + a(c) • 3 ( 2 + 5 )= 3 ( 2 ) + 3 ( 5 ) • a ( b - c ) = ab - a(c) • 3 ( 5 - 2 )= 3 ( 5 ) - 3 ( 2 ) • (+) x (+) = (+) • (+) x (-) = (-) • (-) x (+) = (-)

  10. TRICKS • try to change the number to sub multiple of ten ( hundred, thousand ……..) • 999 = 1000 – 1 • 5 x 200 = 1000 • 4 x 250 = 1000 • 8 x 125 = 1000 • Change a decimal to fraction • 0.5 = ½ 0.25 = ¼ • 0.125 = 1/8 0.2 = 1/5 • 0.04 = 1/25 0.008 = 1/125

  11. 1) 5 x 64 x 25 x 125 x 68 = 5 x ( 2 x 4 x 8 ) x 25 x 125 x 68 = (5 x 2) x (4 x 25) x (8 x 125) x 68 = 10 x 100 x 1000 x 68 = 68 000 000 Commutative law Associative law

  12. 2) 2667 x 999 2667 x 999 = 2667 x ( 1000 – 1 ) = 2667 x 1000 – 2667 = 2 667 000 – 2667 = 2 664 333

  13. 3)65.7x1.64 + 65.7x0.36 - 65.7 65.7 x 1.64 + 65.7 x 0.36 - 65.7 = 65.7 x 1.64 + 65.7 x 0.36 - 65.7 x 1 = 65.7 ( 1.64 + 0.36 – 1 ) = 65.7 ( 1 ) = 65.7 Distributive law

  14. Multiplication of 11 • 12 x 11 = 132 • 12 x 111 = 1332 • 12 x 1111 = 13332 • 19 x 11 = 209 • 19 x 111 = 2109 • 19 x 1111 = 21109 • 19 x 11111 = 211109 1 9 1 9 + 1 9 0 2 1 0 9 1 9 1 9 1 9 + 1 9 0 2 1 1 0 9

  15. Multiplication of 11 12 x 111.1 = 1333.2 12 x 11.11 = 133.32 12 x 1.111 = 13.332

  16. 1 2 0 + 1 2 1 1 2 1 2 12 x 101 = 1212 12 x 1010 = 12120 12 x 1001 = 12012 1.2 x 100.1 = 120.12 0 1 2 0 + 1 2 1 1 2 1 2 0 1 2 0 0 + 1 2 1 1 2 0 1 2

  17. 1 2 1 2 + 1 2 1 2 1 1 3 3 3 2 1212 x 11 = 13332 1212 x 1010 = 1224120 1212 x 1001 = 1213212 121.2 x 100.1 = 12132.12 0 1 2 1 2 0 + 1 2 1 2 1 1 2 2 4 1 2 0 1 2 1 2 0 0 + 1 2 1 2 1 1 2 1 3 2 1 2

  18. 4) 2013+201.3+20.13+2.013 2013 + 201.3 + 20.13 + 2.013 = 2013 ( 1 + 0.1 + 0.01 +0.001 ) = 2013 ( 1.111 ) = (2000 + 13) ( 1.111) = 2222 + 14.443 = 2236.443 Distributive law

  19. 5) 1.1 + 3.3 + 5.5 + 7.7 + 9.9 + 11.11 +13.13 +15.15 +17.17+ 19.19 1.1 + 3.3 + 5.5 + 7.7 + 9.9 + 11.11 +13.13 +15.15 +17.17+ 19.19 = 1.1 (1 + 3 + 5 + 7 + 9) +1.01 (11 +13 +15 +17+ 19) = 1.1 (25) + 1.01 (75) = 27.5 + 75.75 = 103.25 Distributive Law

  20. 6) 3.94 – 0.75 – 1.25 3.94 – 0.75 – 1.25 = 3.94 - 2 = 1.94 0.75+1.25=

  21. 7) 325 000 ÷ 125 325 000 ÷ 125 = 325 000 ÷ = 325 000 x = 325 x 8 = 2600 Change to 1000

  22. 8) (9999+9997+…… +9003+9001 ) – (1+3+ ……+997 +999) (9999+9997+…… +9003+9001 ) – (1+3+ ……+997+999) = 9 000 x 500 = 4 500 000 1 10 : 5 odd numbers 1 1 000 : 500 odd numbers

  23. 9) 2000 x 1999 – 1999 x 1998 + 1998 x 1997 – 1997 x 1996 + …… + 4 x 3 – 3 x 2 + 2x1 2000 x 1999 - 1999 x 1998 + 1998 x 1997 - 1997 x 1996+……+ 4x3 - 3x2 +2x1 = 1999 (2000 – 1998) + 1997 (1998 – 1996) + …… + 3(4 – 2) + 1x2 = 1999 (2) + 1997 (2) + …… + 3(2) + 1(2) = 2 (1999+ 1997 + …… + 3 +1) = 2 ( 2000 ) ( 1000/2) = 2 000 000 Distributive Law

  24. 10) 1998 x 19991999 – 1999 x 19981998 1998 x (1999 x 10000 +1999) – 1999 x (1998 x 10000+1998) = 1998 x [1999 x (10000 + 1) ] – 1999 x [1998 x (10000+1)] = 1998 x 1999 x 10001 – 1999 x 1998 x 10001 = 0

More Related