1 / 26

Unbound states in dripline nuclei

Drip-lines : limit of nuclear binding, large isospin Exploration : new structures EXOTIC NUCLEI Tests : nuclear modelling & interactions V NN (T z ). Extension of the systematics of neutron excitation along isotopic chains.  n ,  p.

nora
Télécharger la présentation

Unbound states in dripline nuclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Drip-lines : limit of nuclear binding, large isospin Exploration : new structures EXOTIC NUCLEI Tests : nuclear modelling & interactions VNN(Tz) Extension of the systematics of neutron excitation along isotopic chains n , p • Probe the structure & spectroscopy at large isospin • Measure unbound states Tools & detection devices EURISOL Unbound states in dripline nuclei Physics & Instrumentation Trento, 16-20 January 2006

  2. Nuclear structure towards the drip-lines : phenomena to explore & to understand Neutron skin halo 6He 8He 4He 4He Change in shell structure New magic numbers Local properties (N,Z) Neutron skins halo,clusters Evolution of structure at large isospin ? 2006 : what is known ? 2016 : area to explore ?

  3. Search for low-lying resonances and study of neutron excitations AZ (p,p’) AZ AZ*  A-1Z +n … p p’ Beam profile : CATS 1 & 2 beam MUST (8 in a wall) + CATS Present techniques & results (p,p’) probe Particle spectroscopy Detection of the light charged recoil particle in a dedicated array  the strip-wall device MUST bound excited states close to thr : E. Khan et al., 20O(p,p’) PLB 490 (‘00) 45 C. Jouanne, V. L., et al., 10,11C(p,p’) PRC 72, 014308 (’05) Modification of the usual shell structure new magic numbers Neutron-rich 20,22O MUST : Y.Blumenfeld et al., NIM A421, 421 (‘99) CATS : S. Ottini et al., NIM A431, 476 (‘99).

  4. Unbound states of exotic nuclei via direct reactions Unbound excited states, low-lying resonances of weakly-bound nuclei : A.Lagoyannis et al., 6He(p,p’) @ Ganil, PLB 518, 27 (‘01) . ? 3.6MeV 2+ S4n=3.1 Exotic structures 6He : 2n-halo 8He : neutron-skin Resonances of 7,8He Sn=2.5 structure of 8He :  + 4n? S2n= 2.1 0+ 8He Prototype of (p,p’) & direct reactions at low energy : 8He(p,p’) SPIRAL beam MUST+CATS >>> Specific tools direct reactions in inverse kinematics and missing mass method exotic He isotopes

  5. Unbound states studies : what we have learnt from SPIRAL beam g.s 0+ 2+ Structure of the 8He nucleus via direct reactions on proton target 2n Transfer 8He(p,t)6He E405S experiment, MUST collab. 8Heexcitation energy spectrum 8He +p @ 15.6 MeV/n 2+ 3.62 ± 0.14 MeV Γ = 0.3 ± 0.2 MeV ? 5.4 ± 0.5 MeV Γ= 0.3 ± 0.5 MeV 1n transfer : 8He(p,d)7He • * Large (p,d), (p,t) • cross sections • DWBA not valid • GENERAL framework : • Coupled Reactions calc. • needed, PLB619, 82 (‘05) F. Skaza, PhD thesis SPhN

  6. Nuclear landscape towards the drip-lines 2006 Nuclear landscape towards the drip-lines 31 F 24 O 8 23 N Z C 12 22 6 19 B 4 Be 14Be 4He Li 11Li 2 He p p d t 6He H 8He borromean n N 2 4 6 8 10 12 14 16 6He Testing ground Which drip-line nuclei have their identity card complete ? Masses, size, densities, neutron excitation, low-lying spectroscopy, Shell structure ? Drip-line : 8He neutron-skin

  7. Nuclear landscape towards the drip-lines 2006 Nuclear landscape towards the drip-lines Next drip-line nuclei ? N 36 33 39 16 18 20 22 24 26 28 30 Testing ground 18 Z 16 43Si 14 34Mg 38Mg 12 33Na 37Na Low-lying resonances ? Neutron skin ? Density Profiles ? New shell effects ? 4He 10 30,31,32Ne Tarasov97 Sakurai97 Notani02, Lukyanov02 31F 8 24O structure of 24O ? 23N 22C

  8. Shell effects far away from stability with new generations of RIB s 20 8 neutrons stability neutrons drip-line N = 16, Z=8, 24O p3/2 fp 16 f7/2 p3/2 fp sd-fp f7/2 sd-fp d3/2 d3/2 N = 20 sd s1/2 sd N = 16 Z=14 30Si d5/2 s1/2 N = 16 d5/2 p1/2 N = 14 22O N = 8 p3/2 N=16  Learnt from 1st generation of RIBs N = 8 s1/2 82 (f7/2) Local properties (Z,N) N=34,40,70 instead of N=50,82 ?  EURISOL (1h11/2-)12 systematics of neutron excitations vs N Search for new magic numbers

  9. Explorations of nuclear landscape using SPIRAL2, GSI, EURISOL beams drip-lines & properties in the vicinity of new doubly magic nuclei ? doubly magic stable nuclei doubly magic unstable nuclei? 82 50 50 40 132-140...Sn 20 82 28 70 ? 20 110Zr FAIR 78Ni 8 2 8 neutron drip-line known up to Z=8 (24O)… 28 2

  10. 2016 : 10 years of exploitation of SPIRAL2 Z N Regions of the chart of nuclei accessible with SPIRAL2 beams Primary beams:  deuterons  heavy ions

  11. 2016 : starting EURISOL beams EURISOL Will all our beams be as intense as we believe ??? the 109/s beams of EURISOL are the 104 /s of SPIRAL2 and co. Z EURISOL If the beams are new (36Ne ? 60-68Ca ?) or rare at present (24O few/s at GANIL, RIKEN) with EURISOL : counting rates less or around 103-105 /s N

  12. Exotic shapes and resonances Z Which beams ? We want to gain in exoticity One-particle state Spectroscopic factors Prospectives Complete the (p,p’) chains O (24O), Ne + Mg, Si, S, Ar +spectroscopy of neutron-rich around N=28, N=40 (new), N=50, N=70 (new) Evolution of neutron excitation Mn vs Nalong isotopic chains 2009+ 2016+ Examples : 38Ne (if not unbound), 60-70Ca, 104Se (Z=34, N=70) Beams Variety A,Z Limit of nuclear binding, I  SPIRAL2 EURISOL N Skin and halos Going closer to driplines with higher intensities : opened physics fields Soft collective modes Alpha-clusters states Far ..far away

  13. Unbound states of exotic nuclei S2n=8.5 ? Sn= 5.2 1.52 4+ 2+ 0.67 MeV 0+ 94Kr S2n=7.91 2+ ? 6? MeV Sn= 4.95 0+ 96Kr Similar trend for all neutron-rich EURISOL beams : few bound states Calc : M.V. Stoitsov, et al., Phys. Rev. C68, 054312 (‘03) Data AME2003

  14. Improved techniques MUr àSTrips2 2004-6 CsI 1.5 cm MUST2 Si (Li) 3mm Si Strips 300 m compactness due to ASIC technology allows particle -  coincidences collaboration : CEA-DAPNIA, GANIL, IPN Orsay • MUST 1  MUST 2: • factor 3 larger active area • factor 6 smaller volume of PA • better time resolution MUST : ~30cm behind ! Si(Li) 4.5 mm Si strips 300 m 100 x 100 mm2 X, Y , T, E 128X 128Y DE CsI 3 cm 4 x 4 segments MUST ~10cm 100 mm 6x6 cm2 NEW GENERATION of MUST array NIM A421, 421 (‘99) • MUST2 developed by: • DAPNIA/SEDI : µ-electronics R&D ASIC • GANIL • IPN Orsay

  15. Experimental method Direct reactions Analysis : Microscopic potentials Coupled channels +CDCC Assets :beam tracking + LCP arrays E-TOF,E-DE, ID collaboration MUST2 : DAPNIA, GANIL, IPN-Orsay ? 2+ 0+ Probes, reactions and beam energies Measure a complete set of direct reactions : investigation of nuclear structure form factors (densities) + Neutron excitations via (p,p ’) spectroscopic factors via (d,p) (p,d) transfers Spin & parity via transfer on polarized targets At which energies do we need to accelerate ? Optimize between : Energies required by physics case & experimental difficulties 1. Access to high energy excited states : higher Einc compared to SPIRAL2 2. energy resolution for excitation energies  lower Einc

  16. Structure studies from direct reactions with EURISOL beams (100MeV/n) 40c.m 20c.m small uncertainty in Theta(LAB)  huge variation in excitation energies

  17. Structure studies from direct reactions with EURISOL beams (25MeV/n) 80c.m 60c.m 20c.m

  18. Requirements for improved charged particle spectroscopy • Charged-Particle spectroscopy needed to exploreunbound states • (p,p’), (p,d) (p,t)(d,p) Thin light targets p, d DE ~ 400keV to 1 MeV Means…  array of Si strip telescopes  stage-telescopes Si + SiLi +CSI  For each channel,TAC for TOF, DT (part. det) ~ 500 ps to ~ 1ns start : particle in the Si stage stop : time before target : beam detector  2 beam tracking detectors for x,y, T event by event 1mm x-y, 300 ps DT ~ 0.5deg MUST@ 15 cm Intrinsic DE (Si) ~ 50 keV DE resolution (with thin target ~ 1mg/cm2) ~ 400-700 keV Precision on centroid, bound states ~ 30 keV resonant states ~ 100-200 keV  ASICs particle spectroscopy, requirements * Angular coverage (FWD and BWD)  4 & Granularity (Dx ~ Dy ~ 1mm) * Large Dynamics and Particle Id [p,d,t, 3,4,6,8He 6Li Energies up to ~ 300 MeV tot E-De and E-TOF correlations for identification low E threshold needed ~ < 300 KeV to measure small c.m. angles * Kinematics Reconstruction of the Scattering angle for variable (!) beam optical quality angle & impact on target required * Coupling with Gamma-spectroscopy,  Compacity

  19. Detection for EURISOL experiments Low Sn, S2n, S4n,… Phase space background due to neutrons produced by decaying unbound states + AZ IDof forward focused heavy fragments : Spectrometer or SiLi, CSI arrays close to targets ? + neutron detection 78Ni(p,p’)78Ni* 78Ni +p  p’ + 78Ni*  p + 76Ni + 2n p’ +78Ni*  p + 74Ni + 4n 78Ni(p,d)77Ni 78Ni +p  d + 77Ni unbound? d + 76Ni + n d +77Ni*  d + 74Ni + 3n Check alpha-neutrons correlations :: needs LCP and neutron devices granularity & efficiency 78Ni(p,t)76Ni 78Ni +p   t + 76Ni  t + 76Ni*  t + 75Ni* + n  t + 74Ni + 2n ID, E vs Theta of LCP

  20. 2016 Wishes for Coupled Detection devices Improved detection for EURISOL experiments • Charged-Particle spectroscopy • needed to exploreunbound states • Thin light targets p, d • DE ~ 400keV to 1 MeV • (p,p’), (p,d) (p,t) • + • Inverse kinematics : • good Energy resolution in Eexc • requires : beam profile on target • beam tracking detectors + • Gamma-ray spectroscopy • needed to separate close excited states • Thick target DE ~ 20keV • (d,p) @ 9 MeV/n Steps beyond in the detection : - ASIC technology (Application Specific Integrated Circuit) (compacity of all devices) - Mixed detection (gamma+ charged particles +… neutrons) : Ex : Ge + Si + scintillator in a crystal-Ge-Si ball array -Higher multiplicities in LCP arrays (3,4,..) challenges in acquisition systems : synchronize separated arrays & triggers needs to reduce dead time + A,Z ID of heavy fragment in a spectrometer or SiLi CsI array +NEUTRON DETECTION

  21. EURISOL : specific experiments and beams Exotic structure at the neutron drip-line : Ex : 24O 34-38Ne Complete the systematic studies of neutron excitation vs N from Z=8 to Z=28 chains  EURISOL Cluster structures : alpha-n correlations & molecular bands Ex : 30Ne : 5 Alpha + 10 n Probes : (p,p’) + transfer reactions + (p,2p)

  22. EURISOL : specific experiments and beams SPIRAL2 production of light exotic nuclei R&D for a 9Be target allowing 40 kW beam SIMILAR TECHNIQUES FOR EURISOL ? Intensities Present (1st generation) intensities : few part/s Needed : (at least) 103-105 /s Energies 20-50 MeV/n : enough Production modes Looking back in the past ! See multi-nucleon transfer Ex : 9Be(13C,14O)8HeH. Bohlen et al., ZPhysA 330 (’88) 10Be(12C,14O)8HeTh. Stolla et al., ZPhysA 356 (’96)

  23. conclusions conclusions ... prospectives EURISOL p target: cryogenic D2 or CD2 exotic beam EURISOL AZ identification A+1Z Beam Tracking Devices BTD structure of drip-line nuclei -ray detection: future AGATA Light charged particle (LCP) detection Means BEAMS OF RARE ISOTOPES Today 1/s, EURISOL 103-105 /s Means DIRECT PROBES i.E p &d targets, + Polarized p,d DIRECT REACTIONS Einc ~ 20-50 MeV/n Nearly (~90%) pure beam

  24. Diffusion (p,p’) en cinématique inverse CsI 1.5 cm Si (Li) 3mm Si Strips 300 m Pre-Amps Si Strip 6x6 cm2 MUST • détection d’ions légers • x,y,E,t) Z & A (1,2,3H, 3,4He) • gamme étendue EDE+DE+E • bas seuil (~ 500 keV) • Résolution en position • Dx, Dy ~ 1 mm détection du faisceau (x,y,t) CATS 2 CATS S. Ottini et al., NIM A431 (‘99) 476 MUST Y. Blumenfeld et al., NIM A421 (‘99) 471

  25. 11C (p,p ’) @ 40,6 MeV/nucléon : l ’effet des CATS sur MUST + Information cruciale apportée par les détecteurs de faisceau DE* = 750 keV précision centroïde ~ 30keV réactions de référence Analyse : Cédric JOUANNE, Thèse 98-01, CEA-Saclay, DSM/DAPNIA/SPhN C. Jouanne, V. L et al., PRC 72, 014308 (’05)

  26. Unbound states of exotic nuclei via direct reactions + to extend the transfer structure studies • more suitable range of beam E for (d,p) : E ~ 10-20 MeV/n ? 3.6MeV 2+ S4n=3.1 Sn=2.5 S2n= 2.1 Sn, S2n weak : High cross sections for the 1n, 2n transfer compared to elastic 0+ 8He Typicalconditions for transfer reactions  ~ 1mb / sr Beams  10 4-5 pps S ~ 10 - 15 % error d/d ~ 10 - 15 % Beam time ~ 2 weeks angular momentum window, selectivity 134Sn(d,p) 135Sn @ 4.9 MeV/nL ~ 2.5@ 10MeV/n L ~ 3.2 For beams Ispiral2 > ~ 104 /s TOOL :direct reactions (p,p) (p,d) (p,alpha) & (d,d) (d,p) (d,3He) AZ(d,p)A+1Z Q = Sn(A+1,Z)-Sn(d) =Sn(A+1,Z) - 2.24 MeV AZ(p,d)A-1Z Q(p,d)= Sn(d)-Sn(A,Z) = 2.224 -Sn Q(p,t)=S2n(t)-S2n(A,Z) = 8.482 –S2n Ex : Q 8He(p,d) = -0.35 AZ(p,t)A-2Z Q 8He(p,t) = 6.34 Q [96Kr(p,d) ]~ - 2.8MeV Q [96Kr(p,t) ]~ - 0.45 MeV Q 8He(p,a) = 3.57MeV Using the A+3Z+1 nucleus with higher I to produce and excite AZ 81Cu (~80-82Zn) I ~ 105 /s Q [ 81Cu(p,a) 78Ni] ~ 7MeV

More Related