170 likes | 280 Vues
The Bucket Algorithm facilitates effective query formulation in data integration contexts by categorizing subgoal sources into defined buckets. Each subgoal is matched with relevant views, creating candidate lists for combinations that are compatible. The algorithm ensures only necessary combinations are retained by minimizing redundant options while discarding contained queries. By applying this method, the process of answering complex queries is streamlined, accommodating arithmetic predicates and enabling maximal containment in query rewriting.
E N D
CSE 636Data Integration Answering Queries Using Views Bucket Algorithm
The Bucket Algorithm • Each subgoal g of Q must be “covered” by some view • Make a list of candidates (buckets) per query subgoal • Consider combinations of candidates from different buckets • Not all combos are “compatible” • Keep the compatible ones and minimize them • Discard the ones contained in another • Take their union
The Bucket Algorithm q(X,Y,R) :- ForSale(X,Y,C,”auto”), Review(X,R,”auto”), Y > 1985 Step 1: For each subgoal, put the relevant sources into a bucket: V1(name, year) :- ForSale(name, year, “France”, “auto”), year > 1990 would be relevant V3(name, year) :- ForSale(name, year, “France”, “cheese”) would be irrelevant Step 2: Take the Cartesian product of the buckets Algorithm produces maximally contained rewriting Ignores interactions between subgoals in Step 1
The Bucket Algorithm: Example V1(Std,Crs,Qtr,Title) :- reg(Std,Crs,Qtr), course(Crs,Title), Crs ≥ 500, Qtr ≥ Aut98 V2(Std,Prof,Crs,Qtr):- reg(Std,Crs,Qtr), teaches(Prof,Crs,Qtr) V3(Std,Crs):- reg(Std,Crs,Qtr), Qtr ≤ Aut94 V4(Prof,Crs,Title,Qtr):- reg(Std,Crs,Qtr), course(Crs,Title), teaches(Prof,Crs,Qtr), Qtr ≤ Aut97 q(S,C,P):- teaches(P,C,Q), reg(S,C,Q), course(C,T), C ≥ 300, Q ≥ Aut95 Step 1: For each query subgoal, put the relevant sources into a bucket
The Bucket Algorithm: Example V1(Std,Crs,Qtr,Title) :- reg(Std,Crs,Qtr), course(Crs,Title), Crs ≥ 500, Qtr ≥ Aut98 V2(Std,Prof,Crs,Qtr) :- reg(Std,Crs,Qtr), teaches(Prof,Crs,Qtr) V3(Std,Crs) :- reg(Std,Crs,Qtr), Qtr ≤ Aut94 V4(Prof,Crs,Title,Qtr) :- reg(Std,Crs,Qtr), course(Crs,Title), teaches(Prof,Crs,Qtr), Qtr ≤ Aut97 q(S,C,P) :- teaches(P,C,Q), reg(S,C,Q), course(C,T), C ≥ 300, Q ≥ Aut95 PProf, CCrs, QQtr Note: Arithmetic predicates don’t pose a problem Buckets teaches reg course V2 V4
The Bucket Algorithm: Example V1(Std,Crs,Qtr,Title):- reg(Std,Crs,Qtr), course(Crs,Title), Crs ≥ 500, Qtr ≥ Aut98 V2(Std,Prof,Crs,Qtr) :- reg(Std,Crs,Qtr), teaches(Prof,Crs,Qtr) V3(Std,Crs) :- reg(Std,Crs,Qtr), Qtr ≤ Aut94 V4(Prof,Crs,Title,Qtr) :- reg(Std,Crs,Qtr), course(Crs,Title), teaches(Prof,Crs,Qtr), Qtr ≤ Aut97 q(S,C,P) :- teaches(P,C,Q), reg(S,C,Q), course(C,T), C ≥ 300, Q ≥ Aut95 SStd, CCrs, QQtr Note: V3 doesn’t work: arithmetic predicates not consistent V4 doesn’t work: S not in the output of V4 Buckets teaches reg course V2 V1 V4 V2
The Bucket Algorithm: Example V1(Std,Crs,Qtr,Title) :- reg(Std,Crs,Qtr), course(Crs,Title), Crs ≥ 500, Qtr ≥ Aut98 V2(Std,Prof,Crs,Qtr) :- reg(Std,Crs,Qtr), teaches(Prof,Crs,Qtr) V3(Std,Crs) :- reg(Std,Crs,Qtr), Qtr ≤ Aut94 V4(Prof,Crs,Title,Qtr) :- reg(Std,Crs,Qtr), course(Crs,Title), teaches(Prof,Crs,Qtr), Qtr ≤ Aut97 q(S,C,P) :- teaches(P,C,Q), reg(S,C,Q), course(C,T), C ≥ 300, Q ≥ Aut95 CCrs, TTitle Buckets teaches reg course V2 V1 V1 V4 V2 V4
The Bucket Algorithm: Example • Step 2: • Try all combos of views, one each from a bucket • Test satisfaction of arithmetic predicates in each case • e.g., two views may not overlap, i.e., they may be inconsistent • Desired rewriting = union of surviving ones • Query rewriting 1: • q1(S,C,P) :- V2(S’,P,C,Q), V1(S,C,Q,T’), V1(S”,C,Q’,T) • no problem from arithmetic predicates (none in V2) • May or may not be minimal (why?) teaches reg course V2 V1 V1 V4 V2 V4
The Bucket Algorithm: Example • Unfolding of rewriting 1: • q1’(S,C,P) :- r(S’,C,Q), t(P,C,Q), r(S,C,Q), c(C,T’), r(S”,C,Q’), • c(C,T), C ≥ 500, Q ≥ Aut98, C ≥ 500, Q’ ≥ Aut98 • Black r’s can be mapped to green r:S’S, S”S, Q’Q • Black c can be mapped to green c: just extend above mapping to TT’ • Minimized unfolding of rewriting 1: • q1m’(S,C,P) :- t(P,C,Q), r(S,C,Q), c(C,T’), C ≥ 500, Q ≥ Aut98 • Minimized rewriting 1: • q1m(S,C,P) :- V2(S’,P,C,Q), V1(S,C,Q,T’)
The Bucket Algorithm: Example teaches reg course • Query Rewriting 2: • q2(S,C,P) :- V2(S’,P,C,Q), V1(S,C,Q,T’), V4(P’,C,T,Q’) • q2’(S,C,P) :- r(S’,C,Q), t(P,C,Q), r(S,C,Q), • r(S,C,Q), c(C,T’), C ≥ 500, Q ≥ Aut98, • r(S”,C,Q’), c(C,T), t(P’,C,Q’), Q’ ≤ Aut97 • This combo is infeasible: consider the conjunction of arithmetic predicates in V1 and V4 • Query rewriting 3: • q3(S,C,P) :- V2(S’,P,C,Q), V2(S,P’,C,Q), V4(P”,C,T,Q’) V2 V1 V1 V4 V2 V4 teaches reg course V2 V1 V1 V4 V2 V4
The Bucket Algorithm: Example • Unfolding of rewriting 3: • q3’(S,C,P) :- r(S’,C,Q), t(P,C,Q), r(S,C,Q), t(P’,C,Q), r(S”,C,Q’), • c(C,T), t(P”,C,Q’), Q’ ≤ Aut97 • The green subgoals can cover the black ones under the mapping: S’S, S”S, P’P, P”P, Q’Q • Minimized rewriting 3: • q3m(S,C,P) :- V2(S,P,C,Q), V4(P,C,T,Q) • Verify that there are only two rewritings that are not covered by others • Maximally Contained Rewriting: • q’ = q1m q3m
The Bucket Algorithm: Example 2 Query: q(X) :- cites(X,Y), cites(Y,X), sameTopic(X,Y) Views: V4(A) :- cites(A,B), cites(B,A) V5(C,D) :- sameTopic(C,D) V6(F,H) :- cites(F,G), cites(G,H), sameTopic(F,G) Note: Should we list V4(X) twice in the buckets? Buckets cites cites sameTopic V4 V4 V5 V6 V6 V6
The Bucket Algorithm: Example 2 • Consider all combos & check for containment of the unfolded rewriting in Q • V4(X) cannot be combined with anything (why?) • Try q1(X) :- V4(X), V4(X), V5(X,Y) • Try q2(X) :- V4(X), V6(X,Y), V5(X,Y) • Does any of these work? • When can we discard a view from consideration?
The Bucket Algorithm: Example 2 • Here is a successful rewriting: • q3(X) :- V6(X,Y), V6(X,Y), V6(X,Y) • By itself is not contained in Q • But, with subgoal X=Y added, it is! • By minimizing the rewriting, we get: • q3m(X,Y) :- V6(X,X)
The Bucket Algorithm: Example 2 • Remarks: • V4 didn’t contribute to any rewrite, but the bucket algorithm doesn’t recognize it ahead • Consider:q2(X,Y) :- cites(X,Y), cites(Y,X) • Then both cites predicates can be folded into V4 • Not recognized by the bucket algorithm
The State of Affairs • Bucket algorithm: • deals well with predicates, Cartesian product can be large (containment check required for every candidate rewriting) • Inverse rules: • modular (extensible to binding patterns, FD’s) • no treatment of predicates • resulting rewritings need significant further optimization Neither scales up • The MINICON algorithm: • change perspective: look at query variables
References • Querying Heterogeneous Information Sources Using Source Descriptors • By Alon Y. Levy, Anand Rajaraman and Joann J. Ordille • VLDB, 1996 • Laks VS Lakshmanan • Lecture Slides • Alon Halevy • Answering Queries Using Views: A Survey • VLDB Journal, 2000 • http://citeseer.ist.psu.edu/halevy00answering.html