1 / 7

MSV 30: A Close Approximation

www.making-statistics-vital.co.uk. MSV 30: A Close Approximation. Homer is using a Binomial distribution to model a random variable X . H e says X ~ B(n, 0.01), where n is large. He approximates this with the Poisson distribution Po(n × 0.01). Homer finds that

Télécharger la présentation

MSV 30: A Close Approximation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. www.making-statistics-vital.co.uk MSV 30: A Close Approximation

  2. Homer is using a Binomial distribution to model a random variable X. He says X ~ B(n, 0.01), where n is large. He approximates this with the Poisson distribution Po(n × 0.01).

  3. Homer finds that P(X = 2) calculated using B(n, 0.01) and P(X = 2) calculated using P(n × 0.01) are extremely close. In fact, for no value of n could they be closer. What is n in this case?

  4. Answer If X ~ B(n, 0.01), then P(X = 2) = (0.01)2(0.99)n-2n(n-1)/2. If X ~ P(n × 0.01), then P(X = 2) = e-0.01n(0.01n)2/2. Plotting y = (0.01)2(0.99)x-2x(x-1)/2 - e-0.01x(0.01x)2/2 gives this:

  5. There are two possible points at which the curve and the x-axis cross. Zooming in shows that these points are close to x = 59 and x = 341. The value of y at 59 is 3.51 × 10-6, and y at 341 is -1.37× 10-7. So since ‘for no other value of n could they be closer,’ X ~ B(341, 0.01) ≈ P(3.41). For P(X=2), the approximation is 2.63 × 10-6 % out.

  6. For X ~ B(341, 0.01), P(X = 1) = 0.11187… For X ~ P(3.41), P(X = 1) = 0.11267... So approximation is 0.71% out here.

  7. With thanks to the Simpson family www.making-statistics-vital.co.uk is written by Jonny Griffiths hello@jonny-griffiths.net

More Related