1 / 38

Unusual spin-Peierls physics in the spin ½ quantum magnet TiOCl

in collaboration with: M. Hoinkis S. Glawion G. Berner Würzburg M. Sing M. Klemm S. Horn J. Deisenhofer Augsburg J. Hemberger A. Krimmel A. Loidl .

odetta
Télécharger la présentation

Unusual spin-Peierls physics in the spin ½ quantum magnet TiOCl

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. in collaboration with: M. HoinkisS. Glawion G. Berner WürzburgM. SingM. KlemmS. Horn J. Deisenhofer AugsburgJ. HembergerA. KrimmelA. Loidl S. van Smaalen (Bayreuth)C. Kuntscher (Stuttgart)R. Valenti (Frankfurt) L. Pisani (Frankfurt)T. Saha-Dasgupta (Kolkata)H. Benthien (Marburg)E. Jeckelmann (Mainz/Hannover) electron07, 08-02-2007 Unusual spin-Peierls physics in the spin ½ quantum magnet TiOCl R. ClaessenUniversität Würzburg, Germany

  2. c b Ti O Cl a electron07, 08-02-2007 Unusual spin-Peierls physics in the spin ½ quantum magnet TiOCl • Why TiOCl ? • Phase diagram and spin-Peierls physics • Electronic structure • Driving TiOCl metallic

  3. (b) (a) c t t´ b a Ti O Cl b a 50mm a c b TiOCl: A low-dimensional Mott insulator

  4. (b) (a) c t t´ b a Ti O Cl b a TiOCl: A low-dimensional Mott insulator • configuration: Ti 3d1 • 1e-/atom: Mott insulator • local spin s=1/2

  5. (b) (a) c t t´ b a Ti O Cl b a TiOCl: A low-dimensional Mott insulator • configuration: Ti 3d1 • 1e-/atom: Mott insulator • local spin s=1/2 • frustrated magnetism, resonating valence bond (RVB) physics ? ?

  6. c b Ti O Cl a electron07, 08-02-2007 • Why TiOCl ? • Phase diagram and spin-Peierls physics • Electronic structure • Driving TiOCl metallic

  7. High T Bonner-Fisher behavior characteristic for 1D AF spin chains Low T spin gap formation of spin singlets due to a spin-Peierls transition ? Magnetic susceptibility

  8. High temperature phase electronic origin of 1D behavior ? band theory (LDA+U): • susceptibility of a 1D spin-1/2 chain • exchange constant: J ~ 660 K Seidel et al. (2003)Valenti et al. (2004)

  9. Low temperature phase PRB 71, 100405(R) (2005),with S. van Smaalen et al (U Bayreuth)

  10. Low temperature phase dimerization and magnetoelastic coupling  spin-Peierls instability ! PRB 71, 100405(R) (2005),with S. van Smaalen et al (U Bayreuth)

  11. Intermediate phase (orbital) fluctuations ? Raman scattering: anomalous phonon line broadening NMR: pseudogap in spin excitation spectrum specific heat: entropy at Tc1 not fully released

  12. Specific heat capacity: (orbital) fluctuations ? S << R ln 2 PRB 72, 012420 (2005)with J. Hemberger et al (U Augsburg)

  13. Intermediate phase (orbital) fluctuations ? Raman scattering: anomalous phonon line broadening NMR: pseudogap in spin excitation spectrum specific heat: entropy at Tc1 not fully released LDA+U: phonon-induced admixture of dxz/dyz to dxy ground state ? most likely not orbitals! photoemission: no admixture from other d-orbitals @ 300 KPRB 72, 125127 (2005) optical spectroscopy:pure dxy ground state up to 100 KRückkamp et al., PRL 95, 097203 (2005)

  14. Intermediate phase X-ray diffraction:scan neighborhood of commensurate (C) peaks incommensurate spin-Peierls state PRB 73, 172413 (2006)with A. Krimmel et al (U Augsburg)

  15. Phase diagram complex spin-Peierls transition: Tc2 - second order transition into incommensurate phase Tc1 – first order lock-in transition induced by frustrated interchain interaction ? Rückamp et al., PRL 95, 097203 (2005)

  16. b a Frustrated interchain interaction

  17. b a Frustrated interchain interaction  (partial) restoration of RVB physics ?  exotic ground state, if driven into metallic state ?

  18. c b Ti O Cl a electron07, 08-02-2007 • Why TiOCl ? • Phase diagram and spin-Peierls physics • Electronic structure • Driving TiOCl metallic

  19. Ti 3d O 2p / Cl 3p Valence band: photoemission vs. theory PRB 72, 125127 (2005)with T. Saha-Dasgupta, R. Valenti et al. T = 370 K

  20. Ti 3d PDOS: photoemission vs. theory PRB 72, 125127 (2005) T = 370 K cluster = Ti dimer T. Saha-Dasgupta, R. Valenti, A. Lichtenstein, et al., submitted

  21. Angle-resolved photoemission (ARPES) PRB 72, 125127 (2005) T = 300 K

  22. k ARPES on Ti 3d band PRB 72, 125127 (2005)

  23. ARPES on Ti 3d band PRB 72, 125127 (2005) 1D Hubbard model DDMRGH. Benthien, E. Jeckelmann

  24. TiOCl vs. TiOBr: effective dimensionality? • TiOBr: J ~ 375 K (55% of TiOCl) • bandwidth more 2D than 1D • b-axis bandwidth scales with t, not J • dispersion reflects charge, not spin dynamics !

  25. c b Ti O Cl a electron07, 08-02-2007 • Why TiOCl ? • Phase diagram and spin-Peierls physics • Electronic structure • Driving TiOCl metallic

  26. O Ti Cl van der Waals-gap Lix(THF)yHfNCl Nature 392, 580 (1998) TiOCl: Doping and exotic superconductivity ? various routes towards doping: • cation substitution: (Ti,Sc)OCl, (Ti,V)OCl • anion substitution: Ti(O,N)Cl • intercalation: donorsacceptors

  27. In situ doping of TiOCl with Na angle-integrated PES @ 370 K • new states in theMott gap • but not (yet?) metallic

  28. X  X X  X k|| k|| In situ doping of TiOCl with Na fresh cleave Na-doped • new states in theMott gap • but not (yet?) metallic energy relative to chem. potential (eV)

  29. TiOCl: pressure-induced metal-insulator transition ? infrared absorption under pressure PRB 74, 184402 (2006)with C. Kuntscher et al (U Stuttgart)

  30. Summary • TiOX (X=Cl,Br) ideal candidates for 2D RVB physics ?- spin-½ system with magnetically frustrated topology • Instead: unconventional quasi-1D spin-Peierls instability- non-ordered 1D spin chain  incommensurate state  dimerized state- incommensurability suggests frustrated interchain interaction • Electronic structure from photoemission- electronic dispersion: 2D vs. 1D behavior- ARPES dispersions qualitatively not understood- local ground state: pure Ti 3dxy (no orbital fluctuations) • Towards a metallic state- doping with alkaline metals: new states in the gap, not (yet) metallic- bandwidth-controlled MIT at high pressure ?

  31. THE END

  32. TiOCl: Pressure induced metal-insulator transition ? infrared absorption C. Kuntscher et al., submitted absorption edge

  33. Specific heat capacity: (orbital) fluctuations ? S << R ln 2 PRB 72, 012420 (2005)with J. Hemberger et al (U Augsburg)

  34. SEM 50mm a c b dissolution growth powder crystals TiOCl: crystal growth Chemical Vapor Transport

  35. S Z c X a Y b b dxz,yz dxy a ~250meV TiOCl: electronic structure LDA+U* Ti 3dxy E–EF (eV) O 2p Cl 3p 3dxy 1D chain along b * R. Valenti, Universität Frankfurt

  36. Ti 3d O 2p / Cl 3p TiOCl: angle-resolved photoemission (ARPES) complete valence bands T = 300 K Ti 3dxy

  37. TiOCl: ARPES on Ti 3d band PRB 72, 125127 (2005) 1D Hubbard model(DDMRG) quasi-1D dispersion along b-axis cannot explain exp.tl dispersion !(WHAT IS MISSING ??)

  38. Valence band: photoemission vs. theory PRB 72, 125127 (2005) with T. Saha-Dasgupta, R. Valenti et al. Ti 3d photoemission vs. theory Ti 3d O 2p / Cl 3p Cluster-DMFTT. Saha-Dasgupta et al.

More Related