180 likes | 333 Vues
This paper presents the hBπ-tree data structure, designed for efficient indexing of spatiotemporal data that encompasses both spatial and temporal attributes. Developed by Evangelos Kanoulas and Georgios Evangelidis from the Department of Applied Informatics at the University of Macedonia, this framework addresses the challenges posed by transaction time databases, enabling support for past, current, and future data. The hBπ-tree offers innovative techniques for managing time-variant and time-invariant attributes, along with a novel D/fp algorithm for effective data node and index node manipulation.
E N D
Spatiotemporal Data Indexing using hBπ-tree Evangelos Kanoulas, Georgios Evangelidis Department of Applied Informatics, University of Macedonia, Hellas
Spatialand Temporal Data • Linear data • Spatial data • Temporal data Applications, which require to support past, current and future data. Kanoulas - Evangelidis
Transaction Time Databases • transaction time • records (tuples) • time-invariant key • time – variant attributes • time interval • valid records Kanoulas - Evangelidis
TSB-tree 1 - structure Kanoulas - Evangelidis
TSB-tree 3 – splitting Kanoulas - Evangelidis
hBπ– tree (Data nodes) Kanoulas - Evangelidis
hBπ– tree (Index nodes) Kanoulas - Evangelidis
TShB-tree – transaction time Data Records – an example Kanoulas - Evangelidis
TShB-tree - splitting • Index nodes • Using the D/fp algorithm • Data nodes • Time split • Key split Kanoulas - Evangelidis
D/fp – Τ/Κ (1) Kanoulas - Evangelidis
D/fp – Τ/Κ (2) Kanoulas - Evangelidis
D/fp – Τ/ΤΚ (1) Kanoulas - Evangelidis
D/fp – Τ/ΤΚ (2) Kanoulas - Evangelidis