Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Jeremy R. Johnson May 9, 2001 PowerPoint Presentation
Download Presentation
Jeremy R. Johnson May 9, 2001

Jeremy R. Johnson May 9, 2001

117 Vues Download Presentation
Télécharger la présentation

Jeremy R. Johnson May 9, 2001

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Applied Symbolic Computation (CS 680/480)Lecture 6: Integer Multiplication, Interpolation, and the Chinese Remainder Theorem Jeremy R. Johnson May 9, 2001 Applied Symbolic Computation

  2. Introduction • Objective: To show the relationship between the Chinese Remainder Theorem and Interpolation. To derive a series of fast integer multiplication algorithms using interpolation. • Karatsuba’s Algorithm • Polynomial algebra • Polynomial version of the Chinese Remainder Theorem • Interpolation • Vandermonde Matrices • Toom-Cook algorithm • Polynomial multiplication using interpolation References: Lipson, Cormen et al. Applied Symbolic Computation

  3. Karatsuba’s Algorithm • Using the classical pen and paper algorithm two n digit integers can be multiplied in O(n2) operations. Karatsuba came up with a faster algorithm. • Let A and B be two integers with • A = A110k + A0, A0 < 10k • B = B110k + B0, B0 < 10k • C = A*B = (A110k + A0)(B110k + B0) = A1B1102k + (A1B0 + A0 B1)10k + A0B0 Instead this can be computed with 3 multiplications • T0 = A0B0 • T1 = (A1 + A0)(B1 + B0) • T2 = A1B1 • C = T2102k + (T1 - T0 - T2)10k + T0 Applied Symbolic Computation

  4. Complexity of Karatsuba’s Algorithm • Let T(n) be the time to compute the product of two n-digit numbers using Karatsuba’s algorithm. Assume n = 2k. T(n) = (nlg(3)), lg(3)  1.58 • T(n)  3T(n/2) + cn  3(3T(n/4) + c(n/2)) + cn = 32T(n/22) + cn(3/2 + 1)  32(3T(n/23) + c(n/4)) + cn(3/2 + 1) = 33T(n/23) + cn(32/22 + 3/2 + 1) …  3iT(n/2i) + cn(3i-1/2i-1 + … + 3/2 + 1) ...  cn[((3/2)k - 1)/(3/2 -1)] --- Assuming T(1)  c  2c(3k - 2k)  2c3lg(n) = 2cnlg(3) Applied Symbolic Computation

  5. Divide & Conquer Recurrence Assume T(n) = aT(n/b) + (n) • T(n) = (n) [a < b] • T(n) = (nlog(n)) [a = b] • T(n) = (nlogb(a)) [a > b] Applied Symbolic Computation

  6. Polynomial Algebra • Let F[x] denote the set of polynomials in the variable x whose coefficients are in the field F. • F[x] becomes an algebra where +, * are defined by polynomial addition and multiplication. Applied Symbolic Computation

  7. Polynomial Algebra mod a Polynomial • A(x)  B(x) (mod f(x))  f(x)|(A(x) - B(x)) • This equivalence relation partitions polynomials in F[x] into equivalence classes where the class [A(x)] consists of the set {A(x) + k(x)f(x), where k(x) and f(x) are in F[x]}. • Choose a representative for [A(x)] with degree < deg(f(x)). Can choose rem(A(x),f(x)). • Arithmetic • [A(x)] + [B(x)] = [A(x) + B(x)] • [A(x)] * [B(x)] = [A(x)B(x)] • The set of equivalence classes with arithmetic defined like this is denoted by F[x]/(f(x)) Applied Symbolic Computation

  8. Modular Inverses Definition: B(x) is the inverse of A(x) mod f(x), if A(x)B(x)  1 (mod f(x)) The equation A(x)B(x)  1 (mod f(x)) has a solution iff gcd(A(x),f(x)) = 1. In particular, if f(x) is irreducible, then F[x]/(f(x)) is a field. By the Extended Euclidean Algorithm, there exist u(x) and v(x) such that A(x)u(x) + B(x)v(x) = gcd(A(x),f(x)). When gcd(A(x),f(x)) = 1, we get A(x)v(x) + f(x)v(x) = 1. Taking this equation mod f(x), we see that A(x)v(x)  1 (mod f(x)) Applied Symbolic Computation

  9. Polynomial Version of the Chinese Remainder Theorem Theorem: Let f(x) and g(x) be polynomials in F[x] (coefficients in a field). Assume that gcd(f(x),g(x)) = 1. For any A1(x) and A2(x) there exist a polynomial A(x) with A(x)  A1(x) (mod f(x)) and A(x)  A2(x) (mod g(x)). Theorem: F[x]/(f(x)g(x))  F[x]/(f(x)) F[x]/(g(x)). I.E. There is a 1-1 mapping from F[x]/(f(x)g(x)) onto F[x]/(f(x)) F[x]/(g(x)) that preserves arithmetic. A(x)  (A(x) mod f(x), A(x) mod g(x)) Applied Symbolic Computation

  10. Constructive Chinese Remainder Theorem Theorem: If gcd(f(x),g(x)) = 1, then there exist Ef(x) and Eg(x) (orthogonal idempotents) • Ef(x)  1 (mod f(x)) • Ef(x)  0 (mod g(x)) • Eg(x)  0 (mod f(x)) • Eg(x)  1 (mod g(x)) It follows that A1(x) Ef(x) + A2(x) Eg(x)  A1(x) (mod f(x)) and  A2(x) (mod g(x)). Proof. Since gcd(f(x),g(x)) = 1, by the Extended Euclidean Algorithm, there exist u(x) and v(x) with f(x)u(x) + g(x)v(x) = 1. Set Ef(x)= g(x)v(x) and Eg(x)= f(x)u(x) Applied Symbolic Computation

  11. Interpolation • A polynomial of degree n is uniquely determined by its value at (n+1) distinct points. Theorem: Let A(x) and B(x) be polynomials of degree m. If A(i) = B(i) for i = 0,…,m, then A(x) = B(x). Proof. Recall that a polynomial of degree m has m roots. A(x) = Q(x)(x- ) + A(), if A() = 0, A(x) = Q(x)(x- ), and deg(Q) = m-1 Consider the polynomial C(x) = A(x) - B(x). Since C(i) = A(i) - B(i) = 0, for m+1 points, C(x) = 0, and A(x) must equal B(x). Applied Symbolic Computation

  12. Lagrange Interpolation Formula • Find a polynomial of degree m given its value at (m+1) distinct points. Assume A(i) = yi • Observe that Applied Symbolic Computation

  13. Polynomial Evaluation, Interpolation and the CRT • Since A(x) = Q(x)(x- ) + A(), A(x)  A() (mod (x- )) • If   , then gcd((x- ),(x- )) = 1. Therefore, we can apply the CRT to find a quadratic polynomial A(x) such that A() = y and A() = z. • A(x) = A() E(x) + A() E(x), where • E(x) = (x - )/( - ) • E(x) = (x - )/( - ) • Observe that • E() = 1 and E() = 0, so that E(x)  1 (mod (x- )) and E(x)  0 (mod (x- )). The equivalent results hold for E(x) Applied Symbolic Computation

  14. Multifactor CRT • The CRT can be generalized to the case when we have n pairwise relatively prime polynomials. If f1(x),…,fn(x) are pairwise relatively prime, i.e. gcd(fi(x),fj(x)) = 1 for i  j, then given A1(x),…,An(x) there exists a polynomial A(x) such that A  Ai(x) (mod fi(x)). • Moreover, there exist a system of orthogonal idempotents: E1(x),…,En(x), such that Ei(x)  1 (mod fi(x)) and Ei(x)  0 (mod fj(x)) for i  j. • A(x) = A1(x)E1(x) + … + An(x)En(x) Applied Symbolic Computation

  15. Lagrange Interpolation and the CRT • Assume that 0, 1,…, n are distinct and let fi(x) = (x- i). Then gcd(fi(x),fj(x)) = 1 for i  j. • Let • Then Ei(x)  1 (mod fi(x)) and Ei(x)  0 (mod fj(x)) for i  j, and Lagrange’s interpolation formula is • A(x) = A(0)E0(x) + … + A(n )En(x) Applied Symbolic Computation

  16. Matrix Version of Polynomial Evaluation • Let A(x) = a3x3 + a2x2 + a1x + a0 • Evaluation at the points , , ,  is obtained from the following matrix-vector product Applied Symbolic Computation

  17. Vandermonde Matrix V(0,…, n) is non-singular when 0,…, n are distinct. Applied Symbolic Computation

  18. Matrix Interpretation of Interpolation • Let A(x) = anxn + … + a1x +a0 be a polynomial of degree n. The problem of determining the (n+1) coefficients an,…,a1,a0 from the (n+1) values A(0),…,A(n) is equivalent to solving the linear system Applied Symbolic Computation

  19. Matrix Interpretation of Interpolation • The previous system has a solution when the 0,…, n are distinct. The solution can be obtained using Lagrange interpolation. In fact, the inverse of V(0,…, n) is obtained from the idempotents Applied Symbolic Computation

  20. Polynomial Multiplication using Interpolation • Compute C(x) = A(x)B(x), where degree(A(x)) = m, and degree(B(x)) = n. Degree(C(x)) = m+n, and C(x) is uniquely determined by its value at m+n+1 distinct points. • [Evaluation] Compute A(i)and B(i)for distinct i, i=0,…,m+n. • [Pointwise Product] Compute C(i) = A(i)*B(i)for i=0,…,m+n. • [Interpolation] Compute the coefficients of C(x) = cnxm+n + … + c1x +c0 from the points C(i) = A(i)*B(i)for i=0,…,m+n. Applied Symbolic Computation

  21. Interpolation and Karatsuba’s Algorithm • Let A(x) = A1x + A0, B(x) = B1x + B, C(x) = A(x)B(x) = C2x2 + C1x + C0 • Then A(10k) = A, B(10k) = B, and C = C(10k) = A(10k)B(10k) = AB • Use interpolation based algorithm: • Evaluate A(), A(), A() and B(), B(), B() for  = 0,  = 1, and  =. • Compute C() = A()B(), C() = A() B(), C() = A()B() • Interpolate the coefficients C2, C1, and C0 • Compute C = C2102k + C110k + C0 Applied Symbolic Computation

  22. Matrix Equation for Karatsuba’s Algorithm • Modified Vandermonde Matrix • Interpolation Applied Symbolic Computation

  23. Integer Multiplication Splitting the Inputs into 3 Parts • Instead of breaking up the inputs into 2 equal parts as is done for Karatsuba’s algorithm, we can split the inputs into three equal parts. • This algorithm is based on an interpolation based polynomial product of two quadratic polynomials. • Let A(x) = A2x2 + A1x + A0, B(x) = B2x2 + B1x + B, C(x) = A(x)B(x) = C4x4 + C3x3 + C2x2 + C1x + C0 • Thus there are 5 products. The divide and conquer part still takes time = O(n). Therefore the total computing time T(n) = 5T(n/3) + O(n) = (nlog3(5)), log3(5)  1.46 Applied Symbolic Computation

  24. Asymptotically Fast Integer Multiplication • We can obtain a sequence of asymptotically faster multiplication algorithms by splitting the inputs into more and more pieces. • If we split A and B into k equal parts, then the corresponding multiplication algorithm is obtained from an interpolation based polynomial multiplication algorithm of two degree (k-1) polynomials. • Since the product polynomial is of degree 2(k-1), we need to evaluate at 2k-1 points. Thus there are (2k-1) products. The divide and conquer part still takes time = O(n). Therefore the total computing time T(n) = (2k-1)T(n/k) + O(n) = (nlogk(2k-1)). Applied Symbolic Computation

  25. Asymptotically Fast Integer Multiplication • Using the previous construction we can find an algorithm to multiply two n digit integers in time (n1+ ) for any positive . • logk(2k-1) = logk(k(2-1/k)) = 1 + logk(2-1/k) • logk(2-1/k)  logk(2) = ln(2)/ln(k)  0. • Can we do better? • The answer is yes. There is a faster algorithm, with computing time (nlog(n)loglog(n)), based on the fast Fourier transform (FFT). This algorithm is also based on interpolation and the polynomial version of the CRT. Applied Symbolic Computation